Skip to content

Distributions module#

statista.distributions.Distributions #

Distributions.

Source code in statista/distributions.py
class Distributions:
    """Distributions."""

    available_distributions = {
        "GEV": GEV,
        "Gumbel": Gumbel,
        "Exponential": Exponential,
        "Normal": Normal,
    }

    def __init__(
        self,
        distribution: str,
        data: Union[list, np.ndarray] = None,
        parameters: Dict[str, Number] = None,
    ):
        if distribution not in self.available_distributions.keys():
            raise ValueError(f"{distribution} not supported")

        self.distribution = self.available_distributions[distribution](data, parameters)

    def __getattr__(self, name: str):
        """Delegate method calls to the subclass"""
        # Retrieve the attribute or method from the distribution object
        try:
            # Retrieve the attribute or method from the subclasses
            attribute = getattr(self.distribution, name)

            # If the attribute is a method, return a callable function
            if callable(attribute):

                def method(*args, **kwargs):
                    """A callable function that simply calls the attribute if it is a method"""
                    return attribute(*args, **kwargs)

                return method

            # If it's a regular attribute, return its value
            return attribute

        except AttributeError:
            raise AttributeError(
                f"'{type(self).__name__}' object has no attribute '{name}'"
            )

__getattr__(name) #

Delegate method calls to the subclass

Source code in statista/distributions.py
def __getattr__(self, name: str):
    """Delegate method calls to the subclass"""
    # Retrieve the attribute or method from the distribution object
    try:
        # Retrieve the attribute or method from the subclasses
        attribute = getattr(self.distribution, name)

        # If the attribute is a method, return a callable function
        if callable(attribute):

            def method(*args, **kwargs):
                """A callable function that simply calls the attribute if it is a method"""
                return attribute(*args, **kwargs)

            return method

        # If it's a regular attribute, return its value
        return attribute

    except AttributeError:
        raise AttributeError(
            f"'{type(self).__name__}' object has no attribute '{name}'"
        )

statista.distributions.PlottingPosition #

PlottingPosition.

Source code in statista/distributions.py
class PlottingPosition:
    """PlottingPosition."""

    def __init__(self):
        pass

    @staticmethod
    def return_period(prob_non_exceed: Union[list, np.ndarray]) -> np.ndarray:
        """Return Period.

        Args:
            prob_non_exceed(list/array):
                non-exceedance probability.

        Returns:
            array:
               return period.

        Examples:
            - First generate some random numbers between 0 and 1 as a non-exceedance probability. then use this non-exceedance
                to calculate the return period.
                ```python
                >>> import numpy as np
                >>> from statista.distributions import PlottingPosition
                >>> data = np.random.random(15)
                >>> rp = PlottingPosition.return_period(data)
                >>> print(rp) # doctest: +SKIP
                [ 1.33088992  4.75342173  2.46855419  1.42836548  2.75320582  2.2268505
                  8.06500888 10.56043917 18.28884687  1.10298241  1.2113997   1.40988022
                  1.02795867  1.01326322  1.05572108]

                ```
        """
        if any(prob_non_exceed > 1):
            raise ValueError("Non-exceedance probability should be less than 1")
        prob_non_exceed = np.array(prob_non_exceed)
        t = 1 / (1 - prob_non_exceed)
        return t

    @staticmethod
    def weibul(data: Union[list, np.ndarray], return_period: int = False) -> np.ndarray:
        """Weibul.

        Weibul method to calculate the cumulative distribution function cdf or
        return period.

        Args:
            data(list/array):
                list/array of the data.
            return_period(bool):
                False to calculate the cumulative distribution function cdf or
                True to calculate the return period. Default=False

        Returns:
            cdf/T (list):
                list of cumulative distribution function or return period.

        Examples:
            ```python
            >>> data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
            >>> cdf = PlottingPosition.weibul(data)
            >>> print(cdf)
            [0.09090909 0.18181818 0.27272727 0.36363636 0.45454545 0.54545455
             0.63636364 0.72727273 0.81818182 0.90909091]

            ```
        """
        data = np.array(data)
        data.sort()
        n = len(data)
        cdf = np.array(range(1, n + 1)) / (n + 1)
        if not return_period:
            return cdf
        else:
            t = PlottingPosition.return_period(cdf)
            return t

return_period(prob_non_exceed) staticmethod #

Return Period.

Parameters:

Name Type Description Default
prob_non_exceed(list/array)

non-exceedance probability.

required

Returns:

Name Type Description
array ndarray

return period.

Examples:

  • First generate some random numbers between 0 and 1 as a non-exceedance probability. then use this non-exceedance to calculate the return period.
    >>> import numpy as np
    >>> from statista.distributions import PlottingPosition
    >>> data = np.random.random(15)
    >>> rp = PlottingPosition.return_period(data)
    >>> print(rp) # doctest: +SKIP
    [ 1.33088992  4.75342173  2.46855419  1.42836548  2.75320582  2.2268505
      8.06500888 10.56043917 18.28884687  1.10298241  1.2113997   1.40988022
      1.02795867  1.01326322  1.05572108]
    
Source code in statista/distributions.py
@staticmethod
def return_period(prob_non_exceed: Union[list, np.ndarray]) -> np.ndarray:
    """Return Period.

    Args:
        prob_non_exceed(list/array):
            non-exceedance probability.

    Returns:
        array:
           return period.

    Examples:
        - First generate some random numbers between 0 and 1 as a non-exceedance probability. then use this non-exceedance
            to calculate the return period.
            ```python
            >>> import numpy as np
            >>> from statista.distributions import PlottingPosition
            >>> data = np.random.random(15)
            >>> rp = PlottingPosition.return_period(data)
            >>> print(rp) # doctest: +SKIP
            [ 1.33088992  4.75342173  2.46855419  1.42836548  2.75320582  2.2268505
              8.06500888 10.56043917 18.28884687  1.10298241  1.2113997   1.40988022
              1.02795867  1.01326322  1.05572108]

            ```
    """
    if any(prob_non_exceed > 1):
        raise ValueError("Non-exceedance probability should be less than 1")
    prob_non_exceed = np.array(prob_non_exceed)
    t = 1 / (1 - prob_non_exceed)
    return t

weibul(data, return_period=False) staticmethod #

Weibul.

Weibul method to calculate the cumulative distribution function cdf or return period.

Parameters:

Name Type Description Default
data(list/array)

list/array of the data.

required
return_period(bool)

False to calculate the cumulative distribution function cdf or True to calculate the return period. Default=False

required

Returns:

Type Description
ndarray

cdf/T (list): list of cumulative distribution function or return period.

Examples:

>>> data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> cdf = PlottingPosition.weibul(data)
>>> print(cdf)
[0.09090909 0.18181818 0.27272727 0.36363636 0.45454545 0.54545455
 0.63636364 0.72727273 0.81818182 0.90909091]
Source code in statista/distributions.py
@staticmethod
def weibul(data: Union[list, np.ndarray], return_period: int = False) -> np.ndarray:
    """Weibul.

    Weibul method to calculate the cumulative distribution function cdf or
    return period.

    Args:
        data(list/array):
            list/array of the data.
        return_period(bool):
            False to calculate the cumulative distribution function cdf or
            True to calculate the return period. Default=False

    Returns:
        cdf/T (list):
            list of cumulative distribution function or return period.

    Examples:
        ```python
        >>> data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        >>> cdf = PlottingPosition.weibul(data)
        >>> print(cdf)
        [0.09090909 0.18181818 0.27272727 0.36363636 0.45454545 0.54545455
         0.63636364 0.72727273 0.81818182 0.90909091]

        ```
    """
    data = np.array(data)
    data.sort()
    n = len(data)
    cdf = np.array(range(1, n + 1)) / (n + 1)
    if not return_period:
        return cdf
    else:
        t = PlottingPosition.return_period(cdf)
        return t

statista.distributions.Gumbel #

Bases: AbstractDistribution

Gumbel distribution (Maximum - Right Skewed) for extreme value analysis.

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a number of samples of various distributions. It is commonly used in hydrology, meteorology, and other fields to model extreme events like floods, rainfall, and wind speeds.

The Gumbel distribution is a special case of the Generalized Extreme Value (GEV) distribution with shape parameter ξ = 0.

Attributes:

Name Type Description
_data ndarray

The data array used for distribution calculations.

_parameters Dict[str, float]

Distribution parameters (loc and scale).

Mathematical Details
  • Probability Density Function (PDF): f(x; ζ, δ) = (1/δ) * exp(-(x-ζ)/δ) * exp(-exp(-(x-ζ)/δ))

where ζ (zeta) is the location parameter, and δ (delta) is the scale parameter.

  • Cumulative Distribution Function (CDF): F(x; ζ, δ) = exp(-exp(-(x-ζ)/δ))

  • The location parameter ζ shifts the distribution along the x-axis, determining the mode (peak) of the distribution. It can range from negative to positive infinity.

  • The scale parameter δ controls the spread of the distribution. A larger scale parameter results in a wider distribution. It must always be positive.

Source code in statista/distributions.py
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
class Gumbel(AbstractDistribution):
    """Gumbel distribution (Maximum - Right Skewed) for extreme value analysis.

    The Gumbel distribution is used to model the distribution of the maximum (or the minimum) 
    of a number of samples of various distributions. It is commonly used in hydrology, 
    meteorology, and other fields to model extreme events like floods, rainfall, and wind speeds.

    The Gumbel distribution is a special case of the Generalized Extreme Value (GEV) 
    distribution with shape parameter ξ = 0.

    Attributes:
        _data (np.ndarray): The data array used for distribution calculations.
        _parameters (Dict[str, float]): Distribution parameters (loc and scale).

    Mathematical Details:
        - Probability Density Function (PDF):
          f(x; ζ, δ) = (1/δ) * exp(-(x-ζ)/δ) * exp(-exp(-(x-ζ)/δ))

          where ζ (zeta) is the location parameter, and δ (delta) is the scale parameter.

        - Cumulative Distribution Function (CDF):
          F(x; ζ, δ) = exp(-exp(-(x-ζ)/δ))

        - The location parameter ζ shifts the distribution along the x-axis, determining
          the mode (peak) of the distribution. It can range from negative to positive infinity.

        - The scale parameter δ controls the spread of the distribution. A larger scale
          parameter results in a wider distribution. It must always be positive.
    """

    def __init__(
        self,
        data: Union[list, np.ndarray] = None,
        parameters: Dict[str, float] = None,
    ):
        """Initialize a Gumbel distribution with data or parameters.

        Args:
            data: Data time series as a list or numpy array.
            parameters: Dictionary of distribution parameters.
                Example: {"loc": 0.0, "scale": 1.0}
                - loc: Location parameter of the Gumbel distribution
                - scale: Scale parameter of the Gumbel distribution (must be positive)

        Raises:
            ValueError: If neither data nor parameters are provided.
            TypeError: If data is not a list or numpy array, or if parameters is not a dictionary.

        Examples:
            - Import necessary libraries
                ```python
                >>> import numpy as np
                >>> from statista.distributions import Gumbel
                ```
            - Load sample data
                ```python
                >>> data = np.loadtxt("examples/data/gumbel.txt")

                ```
            - Initialize with data only
                ```python
                >>> gumbel_dist = Gumbel(data)

                ```
            - Initialize with both data and parameters
                ```python
                >>> parameters = {"loc": 0, "scale": 1}
                >>> gumbel_dist = Gumbel(data, parameters)

                ```
            - Initialize with parameters only
                ```python
                >>> gumbel_dist = Gumbel(parameters={"loc": 0, "scale": 1})

                ```
        """
        super().__init__(data, parameters)
        pass

    @staticmethod
    def _pdf_eq(
        data: Union[list, np.ndarray], parameters: Dict[str, Union[float, Any]]
    ) -> np.ndarray:
        """Calculate the probability density function (PDF) values for Gumbel distribution.

        This method implements the Gumbel PDF equation:
        f(x; ζ, δ) = (1/δ) * exp(-(x-ζ)/δ) * exp(-exp(-(x-ζ)/δ))

        Args:
            data: Data points for which to calculate PDF values.
            parameters: Dictionary of distribution parameters.
                Must contain:
                - "loc": Location parameter (ζ)
                - "scale": Scale parameter (δ), must be positive

        Returns:
            Numpy array containing the PDF values for each data point.

        Raises:
            ValueError: If the scale parameter is negative or zero.
        """
        loc = parameters.get("loc")
        scale = parameters.get("scale")
        if scale <= 0:
            raise ValueError("Scale parameter is negative")
        # z = (ts - loc) / scale
        # pdf = (1.0 / scale) * (np.exp(-(z + (np.exp(-z)))))
        pdf = gumbel_r.pdf(data, loc=loc, scale=scale)
        return pdf

    def pdf(
        self,
        plot_figure: bool = False,
        parameters: Dict[str, Union[float, Any]] = None,
        data: Union[List[float], np.ndarray] = None,
        *args,
        **kwargs,
    ) -> Union[np.ndarray, Tuple[np.ndarray, Figure, Any]]:
        """Calculate the probability density function (PDF) values for Gumbel distribution.

        This method calculates the PDF values for the given data using the specified
        Gumbel distribution parameters. It can also generate a plot of the PDF.

        Args:
            plot_figure: Whether to generate a plot of the PDF.
                Default is False.
            parameters: Dictionary of distribution parameters.
                Example: {"loc": 0.0, "scale": 1.0}
                - loc: Location parameter of the Gumbel distribution
                - scale: Scale parameter of the Gumbel distribution (must be positive)
                If None, uses the parameters provided during initialization.
            data: Data points for which to calculate PDF values.
                If None, uses the data provided during initialization.
            *args: Variable length argument list to pass to the parent class method.
            **kwargs: Arbitrary keyword arguments to pass to the plotting function.
                - fig_size: Size of the figure as a tuple (width, height).
                  Default is (6, 5).
                - xlabel: Label for the x-axis.
                  Default is "Actual data".
                - ylabel: Label for the y-axis.
                  Default is "pdf".
                - fontsize: Font size for plot labels.
                  Default is 15.

        Returns:
            If plot_figure is False:
                Numpy array containing the PDF values for each data point.
            If plot_figure is True:
                Tuple containing:
                - Numpy array of PDF values
                - Figure object
                - Axes object

        Examples:
            - Import necessary libraries:
                ```python
                >>> import numpy as np
                >>> from statista.distributions import Gumbel
                ```
            - Load sample data:
                ```python
                >>> data = np.loadtxt("examples/data/gumbel.txt")

                ```
            - Calculate PDF values with default parameters:
                ```python
                >>> gumbel_dist = Gumbel(data)
                >>> gumbel_dist.fit_model() # doctest: +SKIP
                -----KS Test--------
                Statistic = 0.019
                Accept Hypothesis
                P value = 0.9937026761524456
                {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
                >>> pdf_values = gumbel_dist.pdf()

                ```
            - Generate a PDF plot:
                ```python
                >>> pdf_values, fig, ax = gumbel_dist.pdf(
                ...     plot_figure=True,
                ...     xlabel="Values",
                ...     ylabel="Density",
                ...     fig_size=(8, 6)
                ... )

                ```
                ![gamma-pdf](./../_images/distributions/gamma-pdf-1.png)

            - Calculate PDF with custom parameters:
                ```python
                >>> parameters = {'loc': 0, 'scale': 1}
                >>> pdf_custom = gumbel_dist.pdf(parameters=parameters)
                >>> print(pdf_custom) #doctest: +SKIP
                array([5.44630532e-02, 1.55313724e-01, 3.29857975e-01, 7.01082330e-02,
                       3.54572987e-01, 1.46804327e-01, 3.36843753e-01, 1.01491310e-01,
                       2.38861650e-01, 3.42034071e-01, 2.59606975e-01, 3.33403275e-01,
                       3.52075676e-01, 1.24617619e-01, 6.37994991e-02, 3.67871923e-01,
                       ...
                       2.12529308e-01, 3.13383427e-01, 3.62783762e-01, 4.09957082e-02,
                       2.61395400e-01, 2.58511435e-01, 1.94640967e-01, 3.37392659e-01])
                ```
        """
        result = super().pdf(
            parameters=parameters,
            data=data,
            plot_figure=plot_figure,
            *args,
            **kwargs,
        )
        return result

    def random(
        self,
        size: int,
        parameters: Dict[str, Union[float, Any]] = None,
    ) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
        """Generate random samples from the Gumbel distribution.

        This method generates random samples following the Gumbel distribution
        with the specified parameters.

        Args:
            size: Number of random samples to generate.
            parameters: Dictionary of distribution parameters.
                Example: {"loc": 0.0, "scale": 1.0}
                - loc: Location parameter of the Gumbel distribution
                - scale: Scale parameter of the Gumbel distribution (must be positive)
                If None, uses the parameters provided during initialization.

        Returns:
            Numpy array containing the generated random samples.

        Raises:
            ValueError: If the parameters are not provided and not available from initialization.

        Examples:
            - import the required modules and generate random samples:
                ```python
                >>> import numpy as np
                >>> from statista.distributions import Gumbel
                >>> parameters = {'loc': 0, 'scale': 1}
                >>> gumbel_dist = Gumbel(parameters=parameters)
                >>> random_data = gumbel_dist.random(1000)

                ```
            - Analyze the generated data:
                - Plot the PDF of the random data:
                ```python
                >>> gumbel_dist.pdf(data=random_data, plot_figure=True, xlabel="Random data")

                ```
                ![gamma-pdf](./../_images/distributions/gamma-random-1.png)

                - Plot the CDF of the random data:
                    ```python
                    >>> gumbel_dist.cdf(data=random_data, plot_figure=True, xlabel="Random data")

                    ```
                    ![gamma-cdf](./../_images/distributions/gamma-cdf-1.png)

            - Verify the parameters by fitting the model to the random data
                ```python
                >>> gumbel_dist = Gumbel(data=random_data)
                >>> fitted_params = gumbel_dist.fit_model()
                -----KS Test--------
                Statistic = 0.018
                Accept Hypothesis
                P value = 0.9969602438295625
                >>> print(f"Fitted parameters: {fitted_params}")
                Fitted parameters: {'loc': np.float64(-0.010212105435018243), 'scale': 1.010287499893525}

                ```
            - Should be close to the original parameters {'loc': 0, 'scale': 1}
            ```
        """
        # if no parameters are provided, take the parameters provided in the class initialization.
        if parameters is None:
            parameters = self.parameters

        loc = parameters.get("loc")
        scale = parameters.get("scale")
        if scale <= 0:
            raise ValueError("Scale parameter is negative")

        random_data = gumbel_r.rvs(loc=loc, scale=scale, size=size)
        return random_data

    @staticmethod
    def _cdf_eq(
        data: Union[list, np.ndarray], parameters: Dict[str, Union[float, Any]]
    ) -> np.ndarray:
        """Calculate the cumulative distribution function (CDF) values for Gumbel distribution.

        This method implements the Gumbel CDF equation:
        F(x; ζ, δ) = exp(-exp(-(x-ζ)/δ))

        Args:
            data: Data points for which to calculate CDF values.
            parameters: Dictionary of distribution parameters.
                Must contain:
                - "loc": Location parameter (ζ)
                - "scale": Scale parameter (δ), must be positive

        Returns:
            Numpy array containing the CDF values for each data point.

        Raises:
            ValueError: If the scale parameter is negative or zero.
        """
        loc = parameters.get("loc")
        scale = parameters.get("scale")
        if scale <= 0:
            raise ValueError("Scale parameter is negative")
        # z = (ts - loc) / scale
        # cdf = np.exp(-np.exp(-z))
        cdf = gumbel_r.cdf(data, loc=loc, scale=scale)
        return cdf

    def cdf(
        self,
        plot_figure: bool = False,
        parameters: Dict[str, Union[float, Any]] = None,
        data: Union[List[float], np.ndarray] = None,
        *args,
        **kwargs,
    ) -> Union[
        np.ndarray, Tuple[np.ndarray, Figure, Axes]
    ]:  # pylint: disable=arguments-differ
        """Calculate the cumulative distribution function (CDF) values for Gumbel distribution.

        This method calculates the CDF values for the given data using the specified
        Gumbel distribution parameters. It can also generate a plot of the CDF.

        Args:
            plot_figure: Whether to generate a plot of the CDF.
                Default is False.
            parameters: Dictionary of distribution parameters.
                Example: {"loc": 0.0, "scale": 1.0}
                - loc: Location parameter of the Gumbel distribution
                - scale: Scale parameter of the Gumbel distribution (must be positive)
                If None, uses the parameters provided during initialization.
            data: Data points for which to calculate CDF values.
                If None, uses the data provided during initialization.
            *args: Variable length argument list to pass to the parent class method.
            **kwargs: Arbitrary keyword arguments to pass to the plotting function.
                - fig_size: Size of the figure as a tuple (width, height).
                  Default is (6, 5).
                - xlabel: Label for the x-axis.
                  Default is "Actual data".
                - ylabel: Label for the y-axis.
                  Default is "cdf".
                - fontsize: Font size for plot labels.
                  Default is 15.

        Returns:
            If plot_figure is False:
                Numpy array containing the CDF values for each data point.
            If plot_figure is True:
                Tuple containing:
                - Numpy array of CDF values
                - Figure object
                - Axes object

        Examples:
            -  Load sample data:
                ```python
                >>> import numpy as np
                >>> from statista.distributions import Gumbel
                >>> data = np.loadtxt("examples/data/gumbel.txt")

                ```
            -  Calculate CDF values with default parameters:
                ```python
                >>> gumbel_dist = Gumbel(data)
                >>> gumbel_dist.fit_model() # doctest: +SKIP
                -----KS Test--------
                Statistic = 0.019
                Accept Hypothesis
                P value = 0.9937026761524456
                {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
                >>> cdf_values = gumbel_dist.cdf()

                ```
            -  Generate a CDF plot:
                ```python
                >>> cdf_values, fig, ax = gumbel_dist.cdf(
                ...     plot_figure=True,
                ...     xlabel="Values",
                ...     ylabel="Probability",
                ...     fig_size=(8, 6)
                ... )

                ```
                ![gamma-cdf](./../_images/distributions/gamma-cdf-2.png)

            -  Calculate CDF with custom parameters:
                ```python
                >>> parameters = {'loc': 0, 'scale': 1}
                >>> cdf_custom = gumbel_dist.cdf(parameters=parameters)

                ```
            -  Calculate exceedance probability (1-CDF):
                ```python
                >>> exceedance_prob = 1 - cdf_values

                ```
            ```
        """
        result = super().cdf(
            parameters=parameters,
            data=data,
            plot_figure=plot_figure,
            *args,
            **kwargs,
        )
        return result

    def return_period(
        self,
        data: Union[bool, List[float]] = None,
        parameters: Dict[str, Union[float, Any]] = None,
    ):
        """Calculate return periods for given data values.

        The return period is the average time between events of a given magnitude.
        It is calculated as 1/(1-F(x)), where F(x) is the cumulative distribution function.

        Args:
            data: Values for which to calculate return periods.
                Can be a single value, list, or array.
                If None, uses the data provided during initialization.
            parameters: Dictionary of distribution parameters.
                Example: {"loc": 0.0, "scale": 1.0}
                - loc: Location parameter of the Gumbel distribution
                - scale: Scale parameter of the Gumbel distribution (must be positive)
                If None, uses the parameters provided during initialization.

        Returns:
            Return periods corresponding to the input data values.
            If input is a single value, returns a single value.
            If input is a list or array, returns an array of return periods.

        Examples:
            - Import necessary libraries:
                ```python
                >>> import numpy as np
                >>> from statista.distributions import Gumbel

                ```
            -  Calculate return periods for specific values
                ```python
                >>> data = np.loadtxt("examples/data/gumbel.txt")
                >>> gumbel_dist = Gumbel(data=data,parameters={"loc": 0, "scale": 1})
                >>> return_periods = gumbel_dist.return_period()

                ```
            -  Calculate the 100-year return level:
                - First, find the CDF value corresponding to a 100-year return period
                - F(x) = 1 - 1/T, where T is the return period
                ```python
                >>> cdf_value = 1 - 1/100

                ```
            - Then, find the quantile corresponding to this CDF value:
                ```python
                >>> return_level_100yr = gumbel_dist.inverse_cdf([cdf_value], parameters={"loc": 0, "scale": 1})[0]
                >>> print(f"100-year return level: {return_level_100yr}")
                100-year return level: 4.600149226776579
                ```
        """
        if data is None:
            ts = self.data
        else:
            ts = data

        # if no parameters are provided, take the parameters provided in the class initialization.
        if parameters is None:
            parameters = self.parameters

        cdf: np.ndarray = self.cdf(parameters=parameters, data=ts)

        rp = 1 / (1 - cdf)

        return rp

    @staticmethod
    def truncated_distribution(opt_parameters: list[float], data: list[float]) -> float:
        """Calculate negative log-likelihood for a truncated Gumbel distribution.

        This function calculates the negative log-likelihood of a Gumbel distribution 
        that is truncated (i.e., the data only includes values above a certain threshold).
        It is used as an objective function for parameter optimization when fitting
        a truncated Gumbel distribution to data.

        This approach is useful when the dataset is incomplete or when data is only 
        available above a certain threshold, a common scenario in environmental sciences, 
        finance, and other fields dealing with extremes.

        Args:
            opt_parameters: List of parameters to optimize:
                - opt_parameters[0]: Threshold value
                - opt_parameters[1]: Location parameter (loc)
                - opt_parameters[2]: Scale parameter (scale)
            data: Data points to fit the truncated distribution to.

        Returns:
            Negative log-likelihood value. Lower values indicate better fit.

        Notes:
            The negative log-likelihood is calculated as the sum of two components:
            - L1: Log-likelihood for values below the threshold
            - L2: Log-likelihood for values above the threshold

        Reference:
            https://stackoverflow.com/questions/23217484/how-to-find-parameters-of-gumbels-distribution-using-scipy-optimize

        Examples:
            - import the required modules and generate sample data:
                ```python
                >>> import numpy as np
                >>> from scipy.optimize import minimize
                >>> from statista.distributions import Gumbel
                >>> data = np.random.gumbel(loc=10, scale=2, size=1000)

                ```
            - Initial parameter guess [threshold, loc, scale]:
                ```python
                >>> initial_params = [5.0, 8.0, 1.5]

                ```
            - Optimize parameters:
                ```python
                >>> result = minimize(
                ...     Gumbel.truncated_distribution,
                ...     initial_params,
                ...     args=(data,),
                ...     method='Nelder-Mead'
                ... )
                ```
            - Extract optimized parameters:
                ```python
                >>> threshold, loc, scale = result.x
                >>> print(f"Optimized parameters: threshold={threshold}, loc={loc}, scale={scale}")
                Optimized parameters: threshold=4.0, loc=9.599999999999994, scale=1.5
                ```
        """
        threshold = opt_parameters[0]
        loc = opt_parameters[1]
        scale = opt_parameters[2]

        non_truncated_data = data[data < threshold]
        nx2 = len(data[data >= threshold])
        # pdf with a scaled pdf
        # L1 is pdf based
        parameters = {"loc": loc, "scale": scale}
        pdf = Gumbel._pdf_eq(non_truncated_data, parameters)
        #  the CDF at the threshold is used because the data is assumed to be truncated, meaning that observations below
        #  this threshold are not included in the dataset. When dealing with truncated data, it's essential to adjust
        #  the likelihood calculation to account for the fact that only values above the threshold are observed. The
        #  CDF at the threshold effectively normalizes the distribution, ensuring that the probabilities sum to 1 over
        #  the range of the observed data.
        cdf_at_threshold = 1 - Gumbel._cdf_eq(threshold, parameters)
        # calculates the negative log-likelihood of a Gumbel distribution
        # Adjust the likelihood for the truncation
        # likelihood = pdf / (1 - adjusted_cdf)

        l1 = (-np.log((pdf / scale))).sum()
        # L2 is cdf based
        l2 = (-np.log(cdf_at_threshold)) * nx2
        # print x1, nx2, L1, L2
        return l1 + l2

    def fit_model(
        self,
        method: str = "mle",
        obj_func: Callable = None,
        threshold: Union[None, float, int] = None,
        test: bool = True,
    ) -> Dict[str, float]:
        """Estimate the parameters of the Gumbel distribution from data.

        This method fits the Gumbel distribution to the data using various estimation
        methods, including Maximum Likelihood Estimation (MLE), Method of Moments (MM),
        L-moments, or custom optimization.

        When using the 'optimization' method with a threshold, the method employs two
        likelihood functions:
        - L1: For values below the threshold
        - L2: For values above the threshold

        The parameters are estimated by maximizing the product L1*L2.

        Args:
            method: Estimation method to use.
                Options: 'mle' (Maximum Likelihood Estimation),
                         'mm' (Method of Moments),
                         'lmoments' (L-moments),
                         'optimization' (Custom optimization)
                Default is 'mle'.
            obj_func: Custom objective function to use for parameter estimation.
                Only used when method is 'optimization'.
                Default is None.
            threshold: Value above which to consider data points.
                If provided, only data points above this threshold are used for estimation
                when using the 'optimization' method.
                Default is None (use all data points).
            test: Whether to perform goodness-of-fit tests after estimation.
                Default is True.

        Returns:
            Dictionary of estimated Gumbel distribution parameters.
            Example: {"loc": 0.0, "scale": 1.0}
            - loc: Location parameter of the Gumbel distribution
            - scale: Scale parameter of the Gumbel distribution

        Raises:
            ValueError: If an invalid method is specified or if required parameters are missing.

        Examples:
            - Import necessary libraries:
                ```python
                >>> import numpy as np
                >>> from statista.distributions import Gumbel

                ```
            - Load sample data:
                ```python
                >>> data = np.loadtxt("examples/data/gumbel.txt")
                >>> gumbel_dist = Gumbel(data)

                ```
            - Fit using Maximum Likelihood Estimation (default):
                ```python
                >>> parameters = gumbel_dist.fit_model(method="mle", test=True)
                -----KS Test--------
                Statistic = 0.019
                Accept Hypothesis
                P value = 0.9937026761524456


                >>> print(parameters)
                {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}

                ```
            - Fit using L-moments:
                ```python
                >>> parameters = gumbel_dist.fit_model(method="lmoments", test=True)
                -----KS Test--------
                Statistic = 0.019
                Accept Hypothesis
                P value = 0.9937026761524456
                >>> print(parameters)
                {'loc': np.float64(0.006700226367219564), 'scale': np.float64(1.0531061622114444)}

                ```
            - Fit using optimization with a threshold:
                ```python
                >>> threshold = np.quantile(data, 0.80)
                >>> print(threshold)
                1.5717000000000005
                >>> parameters = gumbel_dist.fit_model(
                ...     method="optimization",
                ...     obj_func=Gumbel.truncated_distribution,
                ...     threshold=threshold
                ... )
                Optimization terminated successfully.
                         Current function value: 0.000000
                         Iterations: 39
                         Function evaluations: 116
                -----KS Test--------
                Statistic = 0.107
                reject Hypothesis
                P value = 2.0977827855404345e-05

                ```
            # Note: When P value is less than the significance level, we reject the null hypothesis,
            # but in this case we're fitting the distribution to part of the data, not the whole data.
            ```
        """
        # obj_func = lambda p, x: (-np.log(Gumbel.pdf(x, p[0], p[1]))).sum()
        # #first we make a simple Gumbel fit
        # Par1 = so.fmin(obj_func, [0.5,0.5], args=(np.array(data),))
        method = super().fit_model(method=method)

        if method == "mle" or method == "mm":
            param = list(gumbel_r.fit(self.data, method=method))
        elif method == "lmoments":
            lm = Lmoments(self.data)
            lmu = lm.Lmom()
            param = Lmoments.gumbel(lmu)
        elif method == "optimization":
            if obj_func is None or threshold is None:
                raise TypeError("threshold should be numeric value")

            param = gumbel_r.fit(self.data, method="mle")
            # then we use the result as starting value for your truncated Gumbel fit
            param = so.fmin(
                obj_func,
                [threshold, param[0], param[1]],
                args=(self.data,),
                maxiter=500,
                maxfun=500,
            )
            param = [param[1], param[2]]
        else:
            raise ValueError(f"The given: {method} does not exist")

        param = {"loc": param[0], "scale": param[1]}
        self.parameters = param

        if test:
            self.ks()
            # self.chisquare()

        return param

    def inverse_cdf(
        self,
        cdf: Union[np.ndarray, List[float]] = None,
        parameters: Dict[str, float] = None,
    ) -> np.ndarray:
        """Calculate the inverse of the cumulative distribution function (quantile function).

        This method calculates the theoretical values (quantiles) corresponding to the given
        CDF values using the specified Gumbel distribution parameters.

        Args:
            cdf: CDF values (non-exceedance probabilities) for which to calculate the quantiles.
                Values should be between 0 and 1.
            parameters: Dictionary of distribution parameters.
                Example: {"loc": 0.0, "scale": 1.0}
                - loc: Location parameter of the Gumbel distribution
                - scale: Scale parameter of the Gumbel distribution (must be positive)
                If None, uses the parameters provided during initialization.

        Returns:
            Numpy array containing the quantile values corresponding to the given CDF values.

        Raises:
            ValueError: If any CDF value is less than or equal to 0 or greater than 1.

        Examples:
            - Load sample data and initialize distribution:
                ```python
                >>> import numpy as np
                >>> from statista.distributions import Gumbel
                >>> data = np.loadtxt("examples/data/gumbel.txt")
                >>> parameters = {'loc': 0, 'scale': 1}
                >>> gumbel_dist = Gumbel(data, parameters)

                ```
            - Calculate quantiles for specific probabilities:
                ```python
                >>> cdf = [0.1, 0.2, 0.4, 0.6, 0.8, 0.9]
                >>> data_values = gumbel_dist.inverse_cdf(cdf)
                >>> print(data_values)
                [-0.83403245 -0.475885 0.08742157 0.67172699 1.49993999 2.25036733]

                ```

            - Calculate return levels for specific return periods:
                ```python
                >>> return_periods = [10, 50, 100]
                >>> probs = 1 - 1/np.array(return_periods)
                >>> return_levels = gumbel_dist.inverse_cdf(probs)
                >>> print(f"10-year return level: {return_levels[0]:.2f}")
                10-year return level: 2.25
                >>> print(f"50-year return level: {return_levels[1]:.2f}")
                50-year return level: 3.90
                >>> print(f"100-year return level: {return_levels[2]:.2f}")
                100-year return level: 4.60

                ```
        """
        if parameters is None:
            parameters = self.parameters

        if any(cdf) <= 0 or any(cdf) > 1:
            raise ValueError("cdf Value Invalid")

        cdf = np.array(cdf)
        qth = self._inv_cdf(cdf, parameters)

        return qth

    @staticmethod
    def _inv_cdf(cdf: Union[np.ndarray, List[float]], parameters: Dict[str, float]) -> np.ndarray:
        """Calculate the inverse CDF (quantile function) values for Gumbel distribution.

        This method implements the Gumbel inverse CDF equation:
        Q(p) = loc - scale * ln(-ln(p))

        Args:
            cdf: CDF values (non-exceedance probabilities) for which to calculate quantiles.
                Values should be between 0 and 1.
            parameters: Dictionary of distribution parameters.
                Must contain:
                - "loc": Location parameter (ζ)
                - "scale": Scale parameter (δ), must be positive

        Returns:
            Numpy array containing the quantile values corresponding to the given CDF values.

        Raises:
            ValueError: If the scale parameter is negative or zero.
        """
        loc = parameters.get("loc")
        scale = parameters.get("scale")
        if scale <= 0:
            raise ValueError("Scale parameter is negative")
        # the main equation from scipy
        # Qth = loc - scale * (np.log(-np.log(cdf)))
        qth = gumbel_r.ppf(cdf, loc=loc, scale=scale)

        return qth

    def ks(self) -> tuple:
        """Perform the Kolmogorov-Smirnov (KS) test for goodness of fit.

        This method tests whether the data follows the fitted Gumbel distribution using
        the Kolmogorov-Smirnov test. The test compares the empirical CDF of the data
        with the theoretical CDF of the fitted distribution.

        Returns:
            Tuple containing:
            - D statistic: The maximum absolute difference between the empirical and theoretical CDFs.
              The smaller the D statistic, the more likely the data follows the distribution.
              The KS test statistic measures the maximum distance between the empirical CDF
              (Weibull plotting position) and the CDF of the reference distribution.
            - p-value: The probability of observing a D statistic as extreme as the one calculated,
              assuming the null hypothesis is true (data follows the distribution).
              A high p-value (close to 1) suggests that there is a high probability that the sample
              comes from the specified distribution.
              If p-value < significance level (typically 0.05), reject the null hypothesis.

        Raises:
            ValueError: If the distribution parameters have not been estimated.

        Examples:
            - Import necessary libraries and initialize the Gumbel distribution:
                ```python
                >>> import numpy as np
                >>> from statista.distributions import Gumbel

                ```
            - Perform KS test:
                ```python
                >>> data = np.loadtxt("examples/data/gumbel.txt")
                >>> gumbel_dist = Gumbel(data)
                >>> gumbel_dist.fit_model()
                -----KS Test--------
                Statistic = 0.019
                Accept Hypothesis
                P value = 0.9937026761524456
                {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
                >>> d_stat, p_value = gumbel_dist.ks()
                -----KS Test--------
                Statistic = 0.019
                Accept Hypothesis
                P value = 0.9937026761524456

                ```
            - Interpret the results:
                ```python
                >>> alpha = 0.05
                >>> if p_value < alpha:
                ...     print(f"Reject the null hypothesis (p-value: {p_value:.4f} < {alpha})")
                ...     print("The data does not follow the fitted Gumbel distribution.")
                ... else:
                ...     print(f"Cannot reject the null hypothesis (p-value: {p_value:.4f} >= {alpha})")
                ...     print("The data may follow the fitted Gumbel distribution.")
                Cannot reject the null hypothesis (p-value: 0.9937 >= 0.05)
                The data may follow the fitted Gumbel distribution.

                ```
        """
        return super().ks()

    def chisquare(self) -> tuple:
        """Perform the Chi-square test for goodness of fit.

        This method tests whether the data follows the fitted Gumbel distribution using
        the Chi-square test. The test compares the observed frequencies with the
        expected frequencies under the fitted distribution.

        Returns:
            Tuple containing:
            - Chi-square statistic: The test statistic measuring the difference between
              observed and expected frequencies.
            - p-value: The probability of observing a Chi-square statistic as extreme as the one calculated,
              assuming the null hypothesis is true (data follows the distribution).
              If p-value < significance level (typically 0.05), reject the null hypothesis.
            Returns None if the test fails due to an exception.

        Raises:
            ValueError: If the distribution parameters have not been estimated.

        Examples:
            - Perform Chi-square test:
                ```python
                >>> import numpy as np
                >>> from statista.distributions import Gumbel
                >>> data = np.loadtxt("examples/data/gumbel.txt")
                >>> gumbel_dist = Gumbel(data)
                >>> gumbel_dist.fit_model()
                -----KS Test--------
                Statistic = 0.019
                Accept Hypothesis
                P value = 0.9937026761524456
                {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
                >>> chi2_stat, p_value = gumbel_dist.chisquare()

                ```
            - Interpret the results:
                ```python
                >>> alpha = 0.05
                >>> if p_value < alpha:
                ...     print(f"Reject the null hypothesis (p-value: {p_value:.4f} < {alpha})")
                ...     print("The data does not follow the fitted Gumbel distribution.")
                >>> else:
                ...     print(f"Cannot reject the null hypothesis (p-value: {p_value:.4f} >= {alpha})")
                ...     print("The data may follow the fitted Gumbel distribution.")
                ```
        """
        return super().chisquare()

    def confidence_interval(
        self,
        alpha: float = 0.1,
        prob_non_exceed: np.ndarray = None,
        parameters: Dict[str, Union[float, Any]] = None,
        plot_figure: bool = False,
        **kwargs,
    ) -> Union[
        Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, Figure, Axes]
    ]:
        """Calculate confidence intervals for the Gumbel distribution quantiles.

        This method calculates the upper and lower bounds of the confidence interval
        for the quantiles of the Gumbel distribution. It can also generate a plot of the
        confidence intervals.

        Args:
            alpha: Significance level for the confidence interval.
                Default is 0.1 (90% confidence interval).
            prob_non_exceed: Non-exceedance probabilities for which to calculate quantiles.
                If None, uses the empirical CDF calculated using Weibull plotting positions.
            parameters: Dictionary of distribution parameters.
                Example: {"loc": 0.0, "scale": 1.0}
                - loc: Location parameter of the Gumbel distribution
                - scale: Scale parameter of the Gumbel distribution (must be positive)
                If None, uses the parameters provided during initialization.
            plot_figure: Whether to generate a plot of the confidence intervals.
                Default is False.
            **kwargs: Additional keyword arguments to pass to the plotting function.
                - fig_size: Size of the figure as a tuple (width, height).
                  Default is (6, 6).
                - fontsize: Font size for plot labels.
                  Default is 11.
                - marker_size: Size of markers in the plot.

        Returns:
            If plot_figure is False:
                Tuple containing:
                - Numpy array of upper bound values
                - Numpy array of lower bound values
            If plot_figure is True:
                Tuple containing:
                - Numpy array of upper bound values
                - Numpy array of lower bound values
                - Figure object
                - Axes object

        Raises:
            ValueError: If the scale parameter is negative or zero.

        Examples:
            - Load data and initialize distribution:
                ```python
                >>> import numpy as np
                >>> import matplotlib.pyplot as plt
                >>> from statista.distributions import Gumbel
                >>> data = np.loadtxt("examples/data/time_series2.txt")
                >>> parameters = {"loc": 463.8040, "scale": 220.0724}
                >>> gumbel_dist = Gumbel(data, parameters)

                ```
            - Calculate confidence intervals
                ```python
                >>> upper, lower = gumbel_dist.confidence_interval(alpha=0.1)

                ```
            - Generate a confidence interval plot:
                ```python
                >>> upper, lower, fig, ax = gumbel_dist.confidence_interval(
                ...     alpha=0.1,
                ...     plot_figure=True,
                ...     marker_size=10
                ... )
                >>> plt.show()

                ```
            ![image](./../_images/distributions/gumbel-confidence-interval.png)
        """
        # if no parameters are provided, take the parameters provided in the class initialization.
        if parameters is None:
            parameters = self.parameters

        scale = parameters.get("scale")
        if scale <= 0:
            raise ValueError("Scale parameter is negative")

        if prob_non_exceed is None:
            prob_non_exceed = PlottingPosition.weibul(self.data)
        else:
            # if the prob_non_exceed is given, check if the length is the same as the data
            if len(prob_non_exceed) != len(self.data):
                raise ValueError(
                    "Length of prob_non_exceed does not match the length of data, use the `PlottingPosition.weibul(data)` "
                    "to the get the non-exceedance probability"
                )

        qth = self._inv_cdf(prob_non_exceed, parameters)
        y = [-np.log(-np.log(j)) for j in prob_non_exceed]
        std_error = [
            (scale / np.sqrt(len(self.data)))
            * np.sqrt(1.1087 + 0.5140 * j + 0.6079 * j**2)
            for j in y
        ]
        v = norm.ppf(1 - alpha / 2)
        q_upper = np.array([qth[j] + v * std_error[j] for j in range(len(self.data))])
        q_lower = np.array([qth[j] - v * std_error[j] for j in range(len(self.data))])

        if plot_figure:
            fig, ax = Plot.confidence_level(
                qth, self.data, q_lower, q_upper, alpha=alpha, **kwargs
            )
            return q_upper, q_lower, fig, ax
        else:
            return q_upper, q_lower

    def plot(
        self,
        fig_size: Tuple[float, float] = (10, 5),
        xlabel: str = "Actual data",
        ylabel: str = "cdf",
        fontsize: int = 15,
        cdf: Union[np.ndarray, list] = None,
        parameters: Dict[str, Union[float, Any]] = None,
    ) -> Tuple[Figure, Tuple[Axes, Axes]]:  # pylint: disable=arguments-differ
        """Probability plot.

        Probability Plot method calculates the theoretical values based on the Gumbel distribution
        parameters, theoretical cdf (or weibul), and calculates the confidence interval.

        Args:
            fig_size: tuple, Default is (10, 5).
                Size of the figure.
            cdf: [np.ndarray]
                theoretical cdf calculated using weibul or using the distribution cdf function.
            fig_size: [tuple]
                Default is (10, 5)
            xlabel: [str]
                Default is "Actual data"
            ylabel: [str]
                Default is "cdf"
            fontsize: [float]
                Default is 15.
            parameters: Dict[str, str]
                {"loc": val, "scale": val}
                - loc: [numeric]
                    location parameter of the gumbel distribution.
                - scale: [numeric]
                    scale parameter of the gumbel distribution.

        Returns:
            Figure:
                matplotlib figure object
            Tuple[Axes, Axes]:
                matplotlib plot axes

        Examples:
        - Instantiate the Gumbel class with the data and the parameters:
            ```python
            >>> import matplotlib.pyplot as plt
            >>> data = np.loadtxt("examples/data/time_series2.txt")
            >>> parameters = {"loc": 463.8040, "scale": 220.0724}
            >>> gumbel_dist = Gumbel(data, parameters)

            ```
        - To calculate the confidence interval, we need to provide the confidence level (`alpha`).
            ```python
            >>> fig, ax = gumbel_dist.plot()
            >>> print(fig)
            Figure(1000x500)
            >>> print(ax)
            (<Axes: xlabel='Actual data', ylabel='pdf'>, <Axes: xlabel='Actual data', ylabel='cdf'>)
            ```
        ![gumbel-plot](./../_images/gumbel-plot.png)
        """
        # if no parameters are provided, take the parameters provided in the class initialization.
        if parameters is None:
            parameters = self.parameters

        scale = parameters.get("scale")

        if scale <= 0:
            raise ValueError("Scale parameter is negative")

        if cdf is None:
            cdf = PlottingPosition.weibul(self.data)
        else:
            # if the cdf is given, check if the length is the same as the data
            if len(cdf) != len(self.data):
                raise ValueError(
                    "Length of cdf does not match the length of data, use the `PlottingPosition.weibul(data)` "
                    "to the get the non-exceedance probability"
                )

        q_x = np.linspace(
            float(self.data_sorted[0]), 1.5 * float(self.data_sorted[-1]), 10000
        )
        pdf_fitted: np.ndarray = self.pdf(parameters=parameters, data=q_x)
        cdf_fitted: np.ndarray = self.cdf(parameters=parameters, data=q_x)

        fig, ax = Plot.details(
            q_x,
            self.data,
            pdf_fitted,
            cdf_fitted,
            cdf,
            fig_size=fig_size,
            xlabel=xlabel,
            ylabel=ylabel,
            fontsize=fontsize,
        )

        return fig, ax

__init__(data=None, parameters=None) #

Initialize a Gumbel distribution with data or parameters.

Parameters:

Name Type Description Default
data Union[list, ndarray]

Data time series as a list or numpy array.

None
parameters Dict[str, float]

Dictionary of distribution parameters. Example: {"loc": 0.0, "scale": 1.0} - loc: Location parameter of the Gumbel distribution - scale: Scale parameter of the Gumbel distribution (must be positive)

None

Raises:

Type Description
ValueError

If neither data nor parameters are provided.

TypeError

If data is not a list or numpy array, or if parameters is not a dictionary.

Examples:

  • Import necessary libraries
    >>> import numpy as np
    >>> from statista.distributions import Gumbel
    
  • Load sample data
    >>> data = np.loadtxt("examples/data/gumbel.txt")
    
  • Initialize with data only
    >>> gumbel_dist = Gumbel(data)
    
  • Initialize with both data and parameters
    >>> parameters = {"loc": 0, "scale": 1}
    >>> gumbel_dist = Gumbel(data, parameters)
    
  • Initialize with parameters only
    >>> gumbel_dist = Gumbel(parameters={"loc": 0, "scale": 1})
    
Source code in statista/distributions.py
def __init__(
    self,
    data: Union[list, np.ndarray] = None,
    parameters: Dict[str, float] = None,
):
    """Initialize a Gumbel distribution with data or parameters.

    Args:
        data: Data time series as a list or numpy array.
        parameters: Dictionary of distribution parameters.
            Example: {"loc": 0.0, "scale": 1.0}
            - loc: Location parameter of the Gumbel distribution
            - scale: Scale parameter of the Gumbel distribution (must be positive)

    Raises:
        ValueError: If neither data nor parameters are provided.
        TypeError: If data is not a list or numpy array, or if parameters is not a dictionary.

    Examples:
        - Import necessary libraries
            ```python
            >>> import numpy as np
            >>> from statista.distributions import Gumbel
            ```
        - Load sample data
            ```python
            >>> data = np.loadtxt("examples/data/gumbel.txt")

            ```
        - Initialize with data only
            ```python
            >>> gumbel_dist = Gumbel(data)

            ```
        - Initialize with both data and parameters
            ```python
            >>> parameters = {"loc": 0, "scale": 1}
            >>> gumbel_dist = Gumbel(data, parameters)

            ```
        - Initialize with parameters only
            ```python
            >>> gumbel_dist = Gumbel(parameters={"loc": 0, "scale": 1})

            ```
    """
    super().__init__(data, parameters)
    pass

pdf(plot_figure=False, parameters=None, data=None, *args, **kwargs) #

Calculate the probability density function (PDF) values for Gumbel distribution.

This method calculates the PDF values for the given data using the specified Gumbel distribution parameters. It can also generate a plot of the PDF.

Parameters:

Name Type Description Default
plot_figure bool

Whether to generate a plot of the PDF. Default is False.

False
parameters Dict[str, Union[float, Any]]

Dictionary of distribution parameters. Example: {"loc": 0.0, "scale": 1.0} - loc: Location parameter of the Gumbel distribution - scale: Scale parameter of the Gumbel distribution (must be positive) If None, uses the parameters provided during initialization.

None
data Union[List[float], ndarray]

Data points for which to calculate PDF values. If None, uses the data provided during initialization.

None
*args

Variable length argument list to pass to the parent class method.

()
**kwargs

Arbitrary keyword arguments to pass to the plotting function. - fig_size: Size of the figure as a tuple (width, height). Default is (6, 5). - xlabel: Label for the x-axis. Default is "Actual data". - ylabel: Label for the y-axis. Default is "pdf". - fontsize: Font size for plot labels. Default is 15.

{}

Returns:

Type Description
Union[ndarray, Tuple[ndarray, Figure, Any]]

If plot_figure is False: Numpy array containing the PDF values for each data point.

Union[ndarray, Tuple[ndarray, Figure, Any]]

If plot_figure is True: Tuple containing: - Numpy array of PDF values - Figure object - Axes object

Examples:

  • Import necessary libraries:
    >>> import numpy as np
    >>> from statista.distributions import Gumbel
    
  • Load sample data:
    >>> data = np.loadtxt("examples/data/gumbel.txt")
    
  • Calculate PDF values with default parameters:
    >>> gumbel_dist = Gumbel(data)
    >>> gumbel_dist.fit_model() # doctest: +SKIP
    -----KS Test--------
    Statistic = 0.019
    Accept Hypothesis
    P value = 0.9937026761524456
    {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
    >>> pdf_values = gumbel_dist.pdf()
    
  • Generate a PDF plot:

    >>> pdf_values, fig, ax = gumbel_dist.pdf(
    ...     plot_figure=True,
    ...     xlabel="Values",
    ...     ylabel="Density",
    ...     fig_size=(8, 6)
    ... )
    
    gamma-pdf

  • Calculate PDF with custom parameters:

    >>> parameters = {'loc': 0, 'scale': 1}
    >>> pdf_custom = gumbel_dist.pdf(parameters=parameters)
    >>> print(pdf_custom) #doctest: +SKIP
    array([5.44630532e-02, 1.55313724e-01, 3.29857975e-01, 7.01082330e-02,
           3.54572987e-01, 1.46804327e-01, 3.36843753e-01, 1.01491310e-01,
           2.38861650e-01, 3.42034071e-01, 2.59606975e-01, 3.33403275e-01,
           3.52075676e-01, 1.24617619e-01, 6.37994991e-02, 3.67871923e-01,
           ...
           2.12529308e-01, 3.13383427e-01, 3.62783762e-01, 4.09957082e-02,
           2.61395400e-01, 2.58511435e-01, 1.94640967e-01, 3.37392659e-01])
    

Source code in statista/distributions.py
def pdf(
    self,
    plot_figure: bool = False,
    parameters: Dict[str, Union[float, Any]] = None,
    data: Union[List[float], np.ndarray] = None,
    *args,
    **kwargs,
) -> Union[np.ndarray, Tuple[np.ndarray, Figure, Any]]:
    """Calculate the probability density function (PDF) values for Gumbel distribution.

    This method calculates the PDF values for the given data using the specified
    Gumbel distribution parameters. It can also generate a plot of the PDF.

    Args:
        plot_figure: Whether to generate a plot of the PDF.
            Default is False.
        parameters: Dictionary of distribution parameters.
            Example: {"loc": 0.0, "scale": 1.0}
            - loc: Location parameter of the Gumbel distribution
            - scale: Scale parameter of the Gumbel distribution (must be positive)
            If None, uses the parameters provided during initialization.
        data: Data points for which to calculate PDF values.
            If None, uses the data provided during initialization.
        *args: Variable length argument list to pass to the parent class method.
        **kwargs: Arbitrary keyword arguments to pass to the plotting function.
            - fig_size: Size of the figure as a tuple (width, height).
              Default is (6, 5).
            - xlabel: Label for the x-axis.
              Default is "Actual data".
            - ylabel: Label for the y-axis.
              Default is "pdf".
            - fontsize: Font size for plot labels.
              Default is 15.

    Returns:
        If plot_figure is False:
            Numpy array containing the PDF values for each data point.
        If plot_figure is True:
            Tuple containing:
            - Numpy array of PDF values
            - Figure object
            - Axes object

    Examples:
        - Import necessary libraries:
            ```python
            >>> import numpy as np
            >>> from statista.distributions import Gumbel
            ```
        - Load sample data:
            ```python
            >>> data = np.loadtxt("examples/data/gumbel.txt")

            ```
        - Calculate PDF values with default parameters:
            ```python
            >>> gumbel_dist = Gumbel(data)
            >>> gumbel_dist.fit_model() # doctest: +SKIP
            -----KS Test--------
            Statistic = 0.019
            Accept Hypothesis
            P value = 0.9937026761524456
            {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
            >>> pdf_values = gumbel_dist.pdf()

            ```
        - Generate a PDF plot:
            ```python
            >>> pdf_values, fig, ax = gumbel_dist.pdf(
            ...     plot_figure=True,
            ...     xlabel="Values",
            ...     ylabel="Density",
            ...     fig_size=(8, 6)
            ... )

            ```
            ![gamma-pdf](./../_images/distributions/gamma-pdf-1.png)

        - Calculate PDF with custom parameters:
            ```python
            >>> parameters = {'loc': 0, 'scale': 1}
            >>> pdf_custom = gumbel_dist.pdf(parameters=parameters)
            >>> print(pdf_custom) #doctest: +SKIP
            array([5.44630532e-02, 1.55313724e-01, 3.29857975e-01, 7.01082330e-02,
                   3.54572987e-01, 1.46804327e-01, 3.36843753e-01, 1.01491310e-01,
                   2.38861650e-01, 3.42034071e-01, 2.59606975e-01, 3.33403275e-01,
                   3.52075676e-01, 1.24617619e-01, 6.37994991e-02, 3.67871923e-01,
                   ...
                   2.12529308e-01, 3.13383427e-01, 3.62783762e-01, 4.09957082e-02,
                   2.61395400e-01, 2.58511435e-01, 1.94640967e-01, 3.37392659e-01])
            ```
    """
    result = super().pdf(
        parameters=parameters,
        data=data,
        plot_figure=plot_figure,
        *args,
        **kwargs,
    )
    return result

random(size, parameters=None) #

Generate random samples from the Gumbel distribution.

This method generates random samples following the Gumbel distribution with the specified parameters.

Parameters:

Name Type Description Default
size int

Number of random samples to generate.

required
parameters Dict[str, Union[float, Any]]

Dictionary of distribution parameters. Example: {"loc": 0.0, "scale": 1.0} - loc: Location parameter of the Gumbel distribution - scale: Scale parameter of the Gumbel distribution (must be positive) If None, uses the parameters provided during initialization.

None

Returns:

Type Description
Union[Tuple[ndarray, Figure, Any], ndarray]

Numpy array containing the generated random samples.

Raises:

Type Description
ValueError

If the parameters are not provided and not available from initialization.

Examples:

  • import the required modules and generate random samples:
    >>> import numpy as np
    >>> from statista.distributions import Gumbel
    >>> parameters = {'loc': 0, 'scale': 1}
    >>> gumbel_dist = Gumbel(parameters=parameters)
    >>> random_data = gumbel_dist.random(1000)
    
  • Analyze the generated data:

    • Plot the PDF of the random data:

      >>> gumbel_dist.pdf(data=random_data, plot_figure=True, xlabel="Random data")
      
      gamma-pdf

    • Plot the CDF of the random data:

      >>> gumbel_dist.cdf(data=random_data, plot_figure=True, xlabel="Random data")
      
      gamma-cdf

  • Verify the parameters by fitting the model to the random data

    >>> gumbel_dist = Gumbel(data=random_data)
    >>> fitted_params = gumbel_dist.fit_model()
    -----KS Test--------
    Statistic = 0.018
    Accept Hypothesis
    P value = 0.9969602438295625
    >>> print(f"Fitted parameters: {fitted_params}")
    Fitted parameters: {'loc': np.float64(-0.010212105435018243), 'scale': 1.010287499893525}
    

  • Should be close to the original parameters {'loc': 0, 'scale': 1} ```
Source code in statista/distributions.py
def random(
    self,
    size: int,
    parameters: Dict[str, Union[float, Any]] = None,
) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
    """Generate random samples from the Gumbel distribution.

    This method generates random samples following the Gumbel distribution
    with the specified parameters.

    Args:
        size: Number of random samples to generate.
        parameters: Dictionary of distribution parameters.
            Example: {"loc": 0.0, "scale": 1.0}
            - loc: Location parameter of the Gumbel distribution
            - scale: Scale parameter of the Gumbel distribution (must be positive)
            If None, uses the parameters provided during initialization.

    Returns:
        Numpy array containing the generated random samples.

    Raises:
        ValueError: If the parameters are not provided and not available from initialization.

    Examples:
        - import the required modules and generate random samples:
            ```python
            >>> import numpy as np
            >>> from statista.distributions import Gumbel
            >>> parameters = {'loc': 0, 'scale': 1}
            >>> gumbel_dist = Gumbel(parameters=parameters)
            >>> random_data = gumbel_dist.random(1000)

            ```
        - Analyze the generated data:
            - Plot the PDF of the random data:
            ```python
            >>> gumbel_dist.pdf(data=random_data, plot_figure=True, xlabel="Random data")

            ```
            ![gamma-pdf](./../_images/distributions/gamma-random-1.png)

            - Plot the CDF of the random data:
                ```python
                >>> gumbel_dist.cdf(data=random_data, plot_figure=True, xlabel="Random data")

                ```
                ![gamma-cdf](./../_images/distributions/gamma-cdf-1.png)

        - Verify the parameters by fitting the model to the random data
            ```python
            >>> gumbel_dist = Gumbel(data=random_data)
            >>> fitted_params = gumbel_dist.fit_model()
            -----KS Test--------
            Statistic = 0.018
            Accept Hypothesis
            P value = 0.9969602438295625
            >>> print(f"Fitted parameters: {fitted_params}")
            Fitted parameters: {'loc': np.float64(-0.010212105435018243), 'scale': 1.010287499893525}

            ```
        - Should be close to the original parameters {'loc': 0, 'scale': 1}
        ```
    """
    # if no parameters are provided, take the parameters provided in the class initialization.
    if parameters is None:
        parameters = self.parameters

    loc = parameters.get("loc")
    scale = parameters.get("scale")
    if scale <= 0:
        raise ValueError("Scale parameter is negative")

    random_data = gumbel_r.rvs(loc=loc, scale=scale, size=size)
    return random_data

cdf(plot_figure=False, parameters=None, data=None, *args, **kwargs) #

Calculate the cumulative distribution function (CDF) values for Gumbel distribution.

This method calculates the CDF values for the given data using the specified Gumbel distribution parameters. It can also generate a plot of the CDF.

Parameters:

Name Type Description Default
plot_figure bool

Whether to generate a plot of the CDF. Default is False.

False
parameters Dict[str, Union[float, Any]]

Dictionary of distribution parameters. Example: {"loc": 0.0, "scale": 1.0} - loc: Location parameter of the Gumbel distribution - scale: Scale parameter of the Gumbel distribution (must be positive) If None, uses the parameters provided during initialization.

None
data Union[List[float], ndarray]

Data points for which to calculate CDF values. If None, uses the data provided during initialization.

None
*args

Variable length argument list to pass to the parent class method.

()
**kwargs

Arbitrary keyword arguments to pass to the plotting function. - fig_size: Size of the figure as a tuple (width, height). Default is (6, 5). - xlabel: Label for the x-axis. Default is "Actual data". - ylabel: Label for the y-axis. Default is "cdf". - fontsize: Font size for plot labels. Default is 15.

{}

Returns:

Type Description
Union[ndarray, Tuple[ndarray, Figure, Axes]]

If plot_figure is False: Numpy array containing the CDF values for each data point.

Union[ndarray, Tuple[ndarray, Figure, Axes]]

If plot_figure is True: Tuple containing: - Numpy array of CDF values - Figure object - Axes object

Examples:

  • Load sample data:
    >>> import numpy as np
    >>> from statista.distributions import Gumbel
    >>> data = np.loadtxt("examples/data/gumbel.txt")
    
  • Calculate CDF values with default parameters:
    >>> gumbel_dist = Gumbel(data)
    >>> gumbel_dist.fit_model() # doctest: +SKIP
    -----KS Test--------
    Statistic = 0.019
    Accept Hypothesis
    P value = 0.9937026761524456
    {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
    >>> cdf_values = gumbel_dist.cdf()
    
  • Generate a CDF plot:

    >>> cdf_values, fig, ax = gumbel_dist.cdf(
    ...     plot_figure=True,
    ...     xlabel="Values",
    ...     ylabel="Probability",
    ...     fig_size=(8, 6)
    ... )
    
    gamma-cdf

  • Calculate CDF with custom parameters:

    >>> parameters = {'loc': 0, 'scale': 1}
    >>> cdf_custom = gumbel_dist.cdf(parameters=parameters)
    

  • Calculate exceedance probability (1-CDF):
    >>> exceedance_prob = 1 - cdf_values
    
    ```
Source code in statista/distributions.py
def cdf(
    self,
    plot_figure: bool = False,
    parameters: Dict[str, Union[float, Any]] = None,
    data: Union[List[float], np.ndarray] = None,
    *args,
    **kwargs,
) -> Union[
    np.ndarray, Tuple[np.ndarray, Figure, Axes]
]:  # pylint: disable=arguments-differ
    """Calculate the cumulative distribution function (CDF) values for Gumbel distribution.

    This method calculates the CDF values for the given data using the specified
    Gumbel distribution parameters. It can also generate a plot of the CDF.

    Args:
        plot_figure: Whether to generate a plot of the CDF.
            Default is False.
        parameters: Dictionary of distribution parameters.
            Example: {"loc": 0.0, "scale": 1.0}
            - loc: Location parameter of the Gumbel distribution
            - scale: Scale parameter of the Gumbel distribution (must be positive)
            If None, uses the parameters provided during initialization.
        data: Data points for which to calculate CDF values.
            If None, uses the data provided during initialization.
        *args: Variable length argument list to pass to the parent class method.
        **kwargs: Arbitrary keyword arguments to pass to the plotting function.
            - fig_size: Size of the figure as a tuple (width, height).
              Default is (6, 5).
            - xlabel: Label for the x-axis.
              Default is "Actual data".
            - ylabel: Label for the y-axis.
              Default is "cdf".
            - fontsize: Font size for plot labels.
              Default is 15.

    Returns:
        If plot_figure is False:
            Numpy array containing the CDF values for each data point.
        If plot_figure is True:
            Tuple containing:
            - Numpy array of CDF values
            - Figure object
            - Axes object

    Examples:
        -  Load sample data:
            ```python
            >>> import numpy as np
            >>> from statista.distributions import Gumbel
            >>> data = np.loadtxt("examples/data/gumbel.txt")

            ```
        -  Calculate CDF values with default parameters:
            ```python
            >>> gumbel_dist = Gumbel(data)
            >>> gumbel_dist.fit_model() # doctest: +SKIP
            -----KS Test--------
            Statistic = 0.019
            Accept Hypothesis
            P value = 0.9937026761524456
            {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
            >>> cdf_values = gumbel_dist.cdf()

            ```
        -  Generate a CDF plot:
            ```python
            >>> cdf_values, fig, ax = gumbel_dist.cdf(
            ...     plot_figure=True,
            ...     xlabel="Values",
            ...     ylabel="Probability",
            ...     fig_size=(8, 6)
            ... )

            ```
            ![gamma-cdf](./../_images/distributions/gamma-cdf-2.png)

        -  Calculate CDF with custom parameters:
            ```python
            >>> parameters = {'loc': 0, 'scale': 1}
            >>> cdf_custom = gumbel_dist.cdf(parameters=parameters)

            ```
        -  Calculate exceedance probability (1-CDF):
            ```python
            >>> exceedance_prob = 1 - cdf_values

            ```
        ```
    """
    result = super().cdf(
        parameters=parameters,
        data=data,
        plot_figure=plot_figure,
        *args,
        **kwargs,
    )
    return result

return_period(data=None, parameters=None) #

Calculate return periods for given data values.

The return period is the average time between events of a given magnitude. It is calculated as 1/(1-F(x)), where F(x) is the cumulative distribution function.

Parameters:

Name Type Description Default
data Union[bool, List[float]]

Values for which to calculate return periods. Can be a single value, list, or array. If None, uses the data provided during initialization.

None
parameters Dict[str, Union[float, Any]]

Dictionary of distribution parameters. Example: {"loc": 0.0, "scale": 1.0} - loc: Location parameter of the Gumbel distribution - scale: Scale parameter of the Gumbel distribution (must be positive) If None, uses the parameters provided during initialization.

None

Returns:

Type Description

Return periods corresponding to the input data values.

If input is a single value, returns a single value.

If input is a list or array, returns an array of return periods.

Examples:

  • Import necessary libraries:
    >>> import numpy as np
    >>> from statista.distributions import Gumbel
    
  • Calculate return periods for specific values
    >>> data = np.loadtxt("examples/data/gumbel.txt")
    >>> gumbel_dist = Gumbel(data=data,parameters={"loc": 0, "scale": 1})
    >>> return_periods = gumbel_dist.return_period()
    
  • Calculate the 100-year return level:
    • First, find the CDF value corresponding to a 100-year return period
    • F(x) = 1 - 1/T, where T is the return period
      >>> cdf_value = 1 - 1/100
      
  • Then, find the quantile corresponding to this CDF value:
    >>> return_level_100yr = gumbel_dist.inverse_cdf([cdf_value], parameters={"loc": 0, "scale": 1})[0]
    >>> print(f"100-year return level: {return_level_100yr}")
    100-year return level: 4.600149226776579
    
Source code in statista/distributions.py
def return_period(
    self,
    data: Union[bool, List[float]] = None,
    parameters: Dict[str, Union[float, Any]] = None,
):
    """Calculate return periods for given data values.

    The return period is the average time between events of a given magnitude.
    It is calculated as 1/(1-F(x)), where F(x) is the cumulative distribution function.

    Args:
        data: Values for which to calculate return periods.
            Can be a single value, list, or array.
            If None, uses the data provided during initialization.
        parameters: Dictionary of distribution parameters.
            Example: {"loc": 0.0, "scale": 1.0}
            - loc: Location parameter of the Gumbel distribution
            - scale: Scale parameter of the Gumbel distribution (must be positive)
            If None, uses the parameters provided during initialization.

    Returns:
        Return periods corresponding to the input data values.
        If input is a single value, returns a single value.
        If input is a list or array, returns an array of return periods.

    Examples:
        - Import necessary libraries:
            ```python
            >>> import numpy as np
            >>> from statista.distributions import Gumbel

            ```
        -  Calculate return periods for specific values
            ```python
            >>> data = np.loadtxt("examples/data/gumbel.txt")
            >>> gumbel_dist = Gumbel(data=data,parameters={"loc": 0, "scale": 1})
            >>> return_periods = gumbel_dist.return_period()

            ```
        -  Calculate the 100-year return level:
            - First, find the CDF value corresponding to a 100-year return period
            - F(x) = 1 - 1/T, where T is the return period
            ```python
            >>> cdf_value = 1 - 1/100

            ```
        - Then, find the quantile corresponding to this CDF value:
            ```python
            >>> return_level_100yr = gumbel_dist.inverse_cdf([cdf_value], parameters={"loc": 0, "scale": 1})[0]
            >>> print(f"100-year return level: {return_level_100yr}")
            100-year return level: 4.600149226776579
            ```
    """
    if data is None:
        ts = self.data
    else:
        ts = data

    # if no parameters are provided, take the parameters provided in the class initialization.
    if parameters is None:
        parameters = self.parameters

    cdf: np.ndarray = self.cdf(parameters=parameters, data=ts)

    rp = 1 / (1 - cdf)

    return rp

truncated_distribution(opt_parameters, data) staticmethod #

Calculate negative log-likelihood for a truncated Gumbel distribution.

This function calculates the negative log-likelihood of a Gumbel distribution that is truncated (i.e., the data only includes values above a certain threshold). It is used as an objective function for parameter optimization when fitting a truncated Gumbel distribution to data.

This approach is useful when the dataset is incomplete or when data is only available above a certain threshold, a common scenario in environmental sciences, finance, and other fields dealing with extremes.

Parameters:

Name Type Description Default
opt_parameters list[float]

List of parameters to optimize: - opt_parameters[0]: Threshold value - opt_parameters[1]: Location parameter (loc) - opt_parameters[2]: Scale parameter (scale)

required
data list[float]

Data points to fit the truncated distribution to.

required

Returns:

Type Description
float

Negative log-likelihood value. Lower values indicate better fit.

Notes

The negative log-likelihood is calculated as the sum of two components: - L1: Log-likelihood for values below the threshold - L2: Log-likelihood for values above the threshold

Reference

https://stackoverflow.com/questions/23217484/how-to-find-parameters-of-gumbels-distribution-using-scipy-optimize

Examples:

  • import the required modules and generate sample data:
    >>> import numpy as np
    >>> from scipy.optimize import minimize
    >>> from statista.distributions import Gumbel
    >>> data = np.random.gumbel(loc=10, scale=2, size=1000)
    
  • Initial parameter guess [threshold, loc, scale]:
    >>> initial_params = [5.0, 8.0, 1.5]
    
  • Optimize parameters:
    >>> result = minimize(
    ...     Gumbel.truncated_distribution,
    ...     initial_params,
    ...     args=(data,),
    ...     method='Nelder-Mead'
    ... )
    
  • Extract optimized parameters:
    >>> threshold, loc, scale = result.x
    >>> print(f"Optimized parameters: threshold={threshold}, loc={loc}, scale={scale}")
    Optimized parameters: threshold=4.0, loc=9.599999999999994, scale=1.5
    
Source code in statista/distributions.py
@staticmethod
def truncated_distribution(opt_parameters: list[float], data: list[float]) -> float:
    """Calculate negative log-likelihood for a truncated Gumbel distribution.

    This function calculates the negative log-likelihood of a Gumbel distribution 
    that is truncated (i.e., the data only includes values above a certain threshold).
    It is used as an objective function for parameter optimization when fitting
    a truncated Gumbel distribution to data.

    This approach is useful when the dataset is incomplete or when data is only 
    available above a certain threshold, a common scenario in environmental sciences, 
    finance, and other fields dealing with extremes.

    Args:
        opt_parameters: List of parameters to optimize:
            - opt_parameters[0]: Threshold value
            - opt_parameters[1]: Location parameter (loc)
            - opt_parameters[2]: Scale parameter (scale)
        data: Data points to fit the truncated distribution to.

    Returns:
        Negative log-likelihood value. Lower values indicate better fit.

    Notes:
        The negative log-likelihood is calculated as the sum of two components:
        - L1: Log-likelihood for values below the threshold
        - L2: Log-likelihood for values above the threshold

    Reference:
        https://stackoverflow.com/questions/23217484/how-to-find-parameters-of-gumbels-distribution-using-scipy-optimize

    Examples:
        - import the required modules and generate sample data:
            ```python
            >>> import numpy as np
            >>> from scipy.optimize import minimize
            >>> from statista.distributions import Gumbel
            >>> data = np.random.gumbel(loc=10, scale=2, size=1000)

            ```
        - Initial parameter guess [threshold, loc, scale]:
            ```python
            >>> initial_params = [5.0, 8.0, 1.5]

            ```
        - Optimize parameters:
            ```python
            >>> result = minimize(
            ...     Gumbel.truncated_distribution,
            ...     initial_params,
            ...     args=(data,),
            ...     method='Nelder-Mead'
            ... )
            ```
        - Extract optimized parameters:
            ```python
            >>> threshold, loc, scale = result.x
            >>> print(f"Optimized parameters: threshold={threshold}, loc={loc}, scale={scale}")
            Optimized parameters: threshold=4.0, loc=9.599999999999994, scale=1.5
            ```
    """
    threshold = opt_parameters[0]
    loc = opt_parameters[1]
    scale = opt_parameters[2]

    non_truncated_data = data[data < threshold]
    nx2 = len(data[data >= threshold])
    # pdf with a scaled pdf
    # L1 is pdf based
    parameters = {"loc": loc, "scale": scale}
    pdf = Gumbel._pdf_eq(non_truncated_data, parameters)
    #  the CDF at the threshold is used because the data is assumed to be truncated, meaning that observations below
    #  this threshold are not included in the dataset. When dealing with truncated data, it's essential to adjust
    #  the likelihood calculation to account for the fact that only values above the threshold are observed. The
    #  CDF at the threshold effectively normalizes the distribution, ensuring that the probabilities sum to 1 over
    #  the range of the observed data.
    cdf_at_threshold = 1 - Gumbel._cdf_eq(threshold, parameters)
    # calculates the negative log-likelihood of a Gumbel distribution
    # Adjust the likelihood for the truncation
    # likelihood = pdf / (1 - adjusted_cdf)

    l1 = (-np.log((pdf / scale))).sum()
    # L2 is cdf based
    l2 = (-np.log(cdf_at_threshold)) * nx2
    # print x1, nx2, L1, L2
    return l1 + l2

fit_model(method='mle', obj_func=None, threshold=None, test=True) #

Estimate the parameters of the Gumbel distribution from data.

This method fits the Gumbel distribution to the data using various estimation methods, including Maximum Likelihood Estimation (MLE), Method of Moments (MM), L-moments, or custom optimization.

When using the 'optimization' method with a threshold, the method employs two likelihood functions: - L1: For values below the threshold - L2: For values above the threshold

The parameters are estimated by maximizing the product L1*L2.

Parameters:

Name Type Description Default
method str

Estimation method to use. Options: 'mle' (Maximum Likelihood Estimation), 'mm' (Method of Moments), 'lmoments' (L-moments), 'optimization' (Custom optimization) Default is 'mle'.

'mle'
obj_func Callable

Custom objective function to use for parameter estimation. Only used when method is 'optimization'. Default is None.

None
threshold Union[None, float, int]

Value above which to consider data points. If provided, only data points above this threshold are used for estimation when using the 'optimization' method. Default is None (use all data points).

None
test bool

Whether to perform goodness-of-fit tests after estimation. Default is True.

True

Returns:

Name Type Description
Dict[str, float]

Dictionary of estimated Gumbel distribution parameters.

Example Dict[str, float]

{"loc": 0.0, "scale": 1.0}

Dict[str, float]
  • loc: Location parameter of the Gumbel distribution
Dict[str, float]
  • scale: Scale parameter of the Gumbel distribution

Raises:

Type Description
ValueError

If an invalid method is specified or if required parameters are missing.

Examples:

  • Import necessary libraries:
    >>> import numpy as np
    >>> from statista.distributions import Gumbel
    
  • Load sample data:
    >>> data = np.loadtxt("examples/data/gumbel.txt")
    >>> gumbel_dist = Gumbel(data)
    
  • Fit using Maximum Likelihood Estimation (default):
    >>> parameters = gumbel_dist.fit_model(method="mle", test=True)
    -----KS Test--------
    Statistic = 0.019
    Accept Hypothesis
    P value = 0.9937026761524456
    
    
    >>> print(parameters)
    {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
    
  • Fit using L-moments:
    >>> parameters = gumbel_dist.fit_model(method="lmoments", test=True)
    -----KS Test--------
    Statistic = 0.019
    Accept Hypothesis
    P value = 0.9937026761524456
    >>> print(parameters)
    {'loc': np.float64(0.006700226367219564), 'scale': np.float64(1.0531061622114444)}
    
  • Fit using optimization with a threshold:
    >>> threshold = np.quantile(data, 0.80)
    >>> print(threshold)
    1.5717000000000005
    >>> parameters = gumbel_dist.fit_model(
    ...     method="optimization",
    ...     obj_func=Gumbel.truncated_distribution,
    ...     threshold=threshold
    ... )
    Optimization terminated successfully.
             Current function value: 0.000000
             Iterations: 39
             Function evaluations: 116
    -----KS Test--------
    Statistic = 0.107
    reject Hypothesis
    P value = 2.0977827855404345e-05
    
Note: When P value is less than the significance level, we reject the null hypothesis,#
but in this case we're fitting the distribution to part of the data, not the whole data.#

```

Source code in statista/distributions.py
def fit_model(
    self,
    method: str = "mle",
    obj_func: Callable = None,
    threshold: Union[None, float, int] = None,
    test: bool = True,
) -> Dict[str, float]:
    """Estimate the parameters of the Gumbel distribution from data.

    This method fits the Gumbel distribution to the data using various estimation
    methods, including Maximum Likelihood Estimation (MLE), Method of Moments (MM),
    L-moments, or custom optimization.

    When using the 'optimization' method with a threshold, the method employs two
    likelihood functions:
    - L1: For values below the threshold
    - L2: For values above the threshold

    The parameters are estimated by maximizing the product L1*L2.

    Args:
        method: Estimation method to use.
            Options: 'mle' (Maximum Likelihood Estimation),
                     'mm' (Method of Moments),
                     'lmoments' (L-moments),
                     'optimization' (Custom optimization)
            Default is 'mle'.
        obj_func: Custom objective function to use for parameter estimation.
            Only used when method is 'optimization'.
            Default is None.
        threshold: Value above which to consider data points.
            If provided, only data points above this threshold are used for estimation
            when using the 'optimization' method.
            Default is None (use all data points).
        test: Whether to perform goodness-of-fit tests after estimation.
            Default is True.

    Returns:
        Dictionary of estimated Gumbel distribution parameters.
        Example: {"loc": 0.0, "scale": 1.0}
        - loc: Location parameter of the Gumbel distribution
        - scale: Scale parameter of the Gumbel distribution

    Raises:
        ValueError: If an invalid method is specified or if required parameters are missing.

    Examples:
        - Import necessary libraries:
            ```python
            >>> import numpy as np
            >>> from statista.distributions import Gumbel

            ```
        - Load sample data:
            ```python
            >>> data = np.loadtxt("examples/data/gumbel.txt")
            >>> gumbel_dist = Gumbel(data)

            ```
        - Fit using Maximum Likelihood Estimation (default):
            ```python
            >>> parameters = gumbel_dist.fit_model(method="mle", test=True)
            -----KS Test--------
            Statistic = 0.019
            Accept Hypothesis
            P value = 0.9937026761524456


            >>> print(parameters)
            {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}

            ```
        - Fit using L-moments:
            ```python
            >>> parameters = gumbel_dist.fit_model(method="lmoments", test=True)
            -----KS Test--------
            Statistic = 0.019
            Accept Hypothesis
            P value = 0.9937026761524456
            >>> print(parameters)
            {'loc': np.float64(0.006700226367219564), 'scale': np.float64(1.0531061622114444)}

            ```
        - Fit using optimization with a threshold:
            ```python
            >>> threshold = np.quantile(data, 0.80)
            >>> print(threshold)
            1.5717000000000005
            >>> parameters = gumbel_dist.fit_model(
            ...     method="optimization",
            ...     obj_func=Gumbel.truncated_distribution,
            ...     threshold=threshold
            ... )
            Optimization terminated successfully.
                     Current function value: 0.000000
                     Iterations: 39
                     Function evaluations: 116
            -----KS Test--------
            Statistic = 0.107
            reject Hypothesis
            P value = 2.0977827855404345e-05

            ```
        # Note: When P value is less than the significance level, we reject the null hypothesis,
        # but in this case we're fitting the distribution to part of the data, not the whole data.
        ```
    """
    # obj_func = lambda p, x: (-np.log(Gumbel.pdf(x, p[0], p[1]))).sum()
    # #first we make a simple Gumbel fit
    # Par1 = so.fmin(obj_func, [0.5,0.5], args=(np.array(data),))
    method = super().fit_model(method=method)

    if method == "mle" or method == "mm":
        param = list(gumbel_r.fit(self.data, method=method))
    elif method == "lmoments":
        lm = Lmoments(self.data)
        lmu = lm.Lmom()
        param = Lmoments.gumbel(lmu)
    elif method == "optimization":
        if obj_func is None or threshold is None:
            raise TypeError("threshold should be numeric value")

        param = gumbel_r.fit(self.data, method="mle")
        # then we use the result as starting value for your truncated Gumbel fit
        param = so.fmin(
            obj_func,
            [threshold, param[0], param[1]],
            args=(self.data,),
            maxiter=500,
            maxfun=500,
        )
        param = [param[1], param[2]]
    else:
        raise ValueError(f"The given: {method} does not exist")

    param = {"loc": param[0], "scale": param[1]}
    self.parameters = param

    if test:
        self.ks()
        # self.chisquare()

    return param

inverse_cdf(cdf=None, parameters=None) #

Calculate the inverse of the cumulative distribution function (quantile function).

This method calculates the theoretical values (quantiles) corresponding to the given CDF values using the specified Gumbel distribution parameters.

Parameters:

Name Type Description Default
cdf Union[ndarray, List[float]]

CDF values (non-exceedance probabilities) for which to calculate the quantiles. Values should be between 0 and 1.

None
parameters Dict[str, float]

Dictionary of distribution parameters. Example: {"loc": 0.0, "scale": 1.0} - loc: Location parameter of the Gumbel distribution - scale: Scale parameter of the Gumbel distribution (must be positive) If None, uses the parameters provided during initialization.

None

Returns:

Type Description
ndarray

Numpy array containing the quantile values corresponding to the given CDF values.

Raises:

Type Description
ValueError

If any CDF value is less than or equal to 0 or greater than 1.

Examples:

  • Load sample data and initialize distribution:
    >>> import numpy as np
    >>> from statista.distributions import Gumbel
    >>> data = np.loadtxt("examples/data/gumbel.txt")
    >>> parameters = {'loc': 0, 'scale': 1}
    >>> gumbel_dist = Gumbel(data, parameters)
    
  • Calculate quantiles for specific probabilities:

    >>> cdf = [0.1, 0.2, 0.4, 0.6, 0.8, 0.9]
    >>> data_values = gumbel_dist.inverse_cdf(cdf)
    >>> print(data_values)
    [-0.83403245 -0.475885 0.08742157 0.67172699 1.49993999 2.25036733]
    

  • Calculate return levels for specific return periods:

    >>> return_periods = [10, 50, 100]
    >>> probs = 1 - 1/np.array(return_periods)
    >>> return_levels = gumbel_dist.inverse_cdf(probs)
    >>> print(f"10-year return level: {return_levels[0]:.2f}")
    10-year return level: 2.25
    >>> print(f"50-year return level: {return_levels[1]:.2f}")
    50-year return level: 3.90
    >>> print(f"100-year return level: {return_levels[2]:.2f}")
    100-year return level: 4.60
    

Source code in statista/distributions.py
def inverse_cdf(
    self,
    cdf: Union[np.ndarray, List[float]] = None,
    parameters: Dict[str, float] = None,
) -> np.ndarray:
    """Calculate the inverse of the cumulative distribution function (quantile function).

    This method calculates the theoretical values (quantiles) corresponding to the given
    CDF values using the specified Gumbel distribution parameters.

    Args:
        cdf: CDF values (non-exceedance probabilities) for which to calculate the quantiles.
            Values should be between 0 and 1.
        parameters: Dictionary of distribution parameters.
            Example: {"loc": 0.0, "scale": 1.0}
            - loc: Location parameter of the Gumbel distribution
            - scale: Scale parameter of the Gumbel distribution (must be positive)
            If None, uses the parameters provided during initialization.

    Returns:
        Numpy array containing the quantile values corresponding to the given CDF values.

    Raises:
        ValueError: If any CDF value is less than or equal to 0 or greater than 1.

    Examples:
        - Load sample data and initialize distribution:
            ```python
            >>> import numpy as np
            >>> from statista.distributions import Gumbel
            >>> data = np.loadtxt("examples/data/gumbel.txt")
            >>> parameters = {'loc': 0, 'scale': 1}
            >>> gumbel_dist = Gumbel(data, parameters)

            ```
        - Calculate quantiles for specific probabilities:
            ```python
            >>> cdf = [0.1, 0.2, 0.4, 0.6, 0.8, 0.9]
            >>> data_values = gumbel_dist.inverse_cdf(cdf)
            >>> print(data_values)
            [-0.83403245 -0.475885 0.08742157 0.67172699 1.49993999 2.25036733]

            ```

        - Calculate return levels for specific return periods:
            ```python
            >>> return_periods = [10, 50, 100]
            >>> probs = 1 - 1/np.array(return_periods)
            >>> return_levels = gumbel_dist.inverse_cdf(probs)
            >>> print(f"10-year return level: {return_levels[0]:.2f}")
            10-year return level: 2.25
            >>> print(f"50-year return level: {return_levels[1]:.2f}")
            50-year return level: 3.90
            >>> print(f"100-year return level: {return_levels[2]:.2f}")
            100-year return level: 4.60

            ```
    """
    if parameters is None:
        parameters = self.parameters

    if any(cdf) <= 0 or any(cdf) > 1:
        raise ValueError("cdf Value Invalid")

    cdf = np.array(cdf)
    qth = self._inv_cdf(cdf, parameters)

    return qth

ks() #

Perform the Kolmogorov-Smirnov (KS) test for goodness of fit.

This method tests whether the data follows the fitted Gumbel distribution using the Kolmogorov-Smirnov test. The test compares the empirical CDF of the data with the theoretical CDF of the fitted distribution.

Returns:

Type Description
tuple

Tuple containing:

tuple
  • D statistic: The maximum absolute difference between the empirical and theoretical CDFs. The smaller the D statistic, the more likely the data follows the distribution. The KS test statistic measures the maximum distance between the empirical CDF (Weibull plotting position) and the CDF of the reference distribution.
tuple
  • p-value: The probability of observing a D statistic as extreme as the one calculated, assuming the null hypothesis is true (data follows the distribution). A high p-value (close to 1) suggests that there is a high probability that the sample comes from the specified distribution. If p-value < significance level (typically 0.05), reject the null hypothesis.

Raises:

Type Description
ValueError

If the distribution parameters have not been estimated.

Examples:

  • Import necessary libraries and initialize the Gumbel distribution:
    >>> import numpy as np
    >>> from statista.distributions import Gumbel
    
  • Perform KS test:
    >>> data = np.loadtxt("examples/data/gumbel.txt")
    >>> gumbel_dist = Gumbel(data)
    >>> gumbel_dist.fit_model()
    -----KS Test--------
    Statistic = 0.019
    Accept Hypothesis
    P value = 0.9937026761524456
    {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
    >>> d_stat, p_value = gumbel_dist.ks()
    -----KS Test--------
    Statistic = 0.019
    Accept Hypothesis
    P value = 0.9937026761524456
    
  • Interpret the results:
    >>> alpha = 0.05
    >>> if p_value < alpha:
    ...     print(f"Reject the null hypothesis (p-value: {p_value:.4f} < {alpha})")
    ...     print("The data does not follow the fitted Gumbel distribution.")
    ... else:
    ...     print(f"Cannot reject the null hypothesis (p-value: {p_value:.4f} >= {alpha})")
    ...     print("The data may follow the fitted Gumbel distribution.")
    Cannot reject the null hypothesis (p-value: 0.9937 >= 0.05)
    The data may follow the fitted Gumbel distribution.
    
Source code in statista/distributions.py
def ks(self) -> tuple:
    """Perform the Kolmogorov-Smirnov (KS) test for goodness of fit.

    This method tests whether the data follows the fitted Gumbel distribution using
    the Kolmogorov-Smirnov test. The test compares the empirical CDF of the data
    with the theoretical CDF of the fitted distribution.

    Returns:
        Tuple containing:
        - D statistic: The maximum absolute difference between the empirical and theoretical CDFs.
          The smaller the D statistic, the more likely the data follows the distribution.
          The KS test statistic measures the maximum distance between the empirical CDF
          (Weibull plotting position) and the CDF of the reference distribution.
        - p-value: The probability of observing a D statistic as extreme as the one calculated,
          assuming the null hypothesis is true (data follows the distribution).
          A high p-value (close to 1) suggests that there is a high probability that the sample
          comes from the specified distribution.
          If p-value < significance level (typically 0.05), reject the null hypothesis.

    Raises:
        ValueError: If the distribution parameters have not been estimated.

    Examples:
        - Import necessary libraries and initialize the Gumbel distribution:
            ```python
            >>> import numpy as np
            >>> from statista.distributions import Gumbel

            ```
        - Perform KS test:
            ```python
            >>> data = np.loadtxt("examples/data/gumbel.txt")
            >>> gumbel_dist = Gumbel(data)
            >>> gumbel_dist.fit_model()
            -----KS Test--------
            Statistic = 0.019
            Accept Hypothesis
            P value = 0.9937026761524456
            {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
            >>> d_stat, p_value = gumbel_dist.ks()
            -----KS Test--------
            Statistic = 0.019
            Accept Hypothesis
            P value = 0.9937026761524456

            ```
        - Interpret the results:
            ```python
            >>> alpha = 0.05
            >>> if p_value < alpha:
            ...     print(f"Reject the null hypothesis (p-value: {p_value:.4f} < {alpha})")
            ...     print("The data does not follow the fitted Gumbel distribution.")
            ... else:
            ...     print(f"Cannot reject the null hypothesis (p-value: {p_value:.4f} >= {alpha})")
            ...     print("The data may follow the fitted Gumbel distribution.")
            Cannot reject the null hypothesis (p-value: 0.9937 >= 0.05)
            The data may follow the fitted Gumbel distribution.

            ```
    """
    return super().ks()

chisquare() #

Perform the Chi-square test for goodness of fit.

This method tests whether the data follows the fitted Gumbel distribution using the Chi-square test. The test compares the observed frequencies with the expected frequencies under the fitted distribution.

Returns:

Type Description
tuple

Tuple containing:

tuple
  • Chi-square statistic: The test statistic measuring the difference between observed and expected frequencies.
tuple
  • p-value: The probability of observing a Chi-square statistic as extreme as the one calculated, assuming the null hypothesis is true (data follows the distribution). If p-value < significance level (typically 0.05), reject the null hypothesis.
tuple

Returns None if the test fails due to an exception.

Raises:

Type Description
ValueError

If the distribution parameters have not been estimated.

Examples:

  • Perform Chi-square test:
    >>> import numpy as np
    >>> from statista.distributions import Gumbel
    >>> data = np.loadtxt("examples/data/gumbel.txt")
    >>> gumbel_dist = Gumbel(data)
    >>> gumbel_dist.fit_model()
    -----KS Test--------
    Statistic = 0.019
    Accept Hypothesis
    P value = 0.9937026761524456
    {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
    >>> chi2_stat, p_value = gumbel_dist.chisquare()
    
  • Interpret the results:
    >>> alpha = 0.05
    >>> if p_value < alpha:
    ...     print(f"Reject the null hypothesis (p-value: {p_value:.4f} < {alpha})")
    ...     print("The data does not follow the fitted Gumbel distribution.")
    >>> else:
    ...     print(f"Cannot reject the null hypothesis (p-value: {p_value:.4f} >= {alpha})")
    ...     print("The data may follow the fitted Gumbel distribution.")
    
Source code in statista/distributions.py
def chisquare(self) -> tuple:
    """Perform the Chi-square test for goodness of fit.

    This method tests whether the data follows the fitted Gumbel distribution using
    the Chi-square test. The test compares the observed frequencies with the
    expected frequencies under the fitted distribution.

    Returns:
        Tuple containing:
        - Chi-square statistic: The test statistic measuring the difference between
          observed and expected frequencies.
        - p-value: The probability of observing a Chi-square statistic as extreme as the one calculated,
          assuming the null hypothesis is true (data follows the distribution).
          If p-value < significance level (typically 0.05), reject the null hypothesis.
        Returns None if the test fails due to an exception.

    Raises:
        ValueError: If the distribution parameters have not been estimated.

    Examples:
        - Perform Chi-square test:
            ```python
            >>> import numpy as np
            >>> from statista.distributions import Gumbel
            >>> data = np.loadtxt("examples/data/gumbel.txt")
            >>> gumbel_dist = Gumbel(data)
            >>> gumbel_dist.fit_model()
            -----KS Test--------
            Statistic = 0.019
            Accept Hypothesis
            P value = 0.9937026761524456
            {'loc': np.float64(0.010101355750222706), 'scale': 1.0313042643102108}
            >>> chi2_stat, p_value = gumbel_dist.chisquare()

            ```
        - Interpret the results:
            ```python
            >>> alpha = 0.05
            >>> if p_value < alpha:
            ...     print(f"Reject the null hypothesis (p-value: {p_value:.4f} < {alpha})")
            ...     print("The data does not follow the fitted Gumbel distribution.")
            >>> else:
            ...     print(f"Cannot reject the null hypothesis (p-value: {p_value:.4f} >= {alpha})")
            ...     print("The data may follow the fitted Gumbel distribution.")
            ```
    """
    return super().chisquare()

confidence_interval(alpha=0.1, prob_non_exceed=None, parameters=None, plot_figure=False, **kwargs) #

Calculate confidence intervals for the Gumbel distribution quantiles.

This method calculates the upper and lower bounds of the confidence interval for the quantiles of the Gumbel distribution. It can also generate a plot of the confidence intervals.

Parameters:

Name Type Description Default
alpha float

Significance level for the confidence interval. Default is 0.1 (90% confidence interval).

0.1
prob_non_exceed ndarray

Non-exceedance probabilities for which to calculate quantiles. If None, uses the empirical CDF calculated using Weibull plotting positions.

None
parameters Dict[str, Union[float, Any]]

Dictionary of distribution parameters. Example: {"loc": 0.0, "scale": 1.0} - loc: Location parameter of the Gumbel distribution - scale: Scale parameter of the Gumbel distribution (must be positive) If None, uses the parameters provided during initialization.

None
plot_figure bool

Whether to generate a plot of the confidence intervals. Default is False.

False
**kwargs

Additional keyword arguments to pass to the plotting function. - fig_size: Size of the figure as a tuple (width, height). Default is (6, 6). - fontsize: Font size for plot labels. Default is 11. - marker_size: Size of markers in the plot.

{}

Returns:

Type Description
Union[Tuple[ndarray, ndarray], Tuple[ndarray, ndarray, Figure, Axes]]

If plot_figure is False: Tuple containing: - Numpy array of upper bound values - Numpy array of lower bound values

Union[Tuple[ndarray, ndarray], Tuple[ndarray, ndarray, Figure, Axes]]

If plot_figure is True: Tuple containing: - Numpy array of upper bound values - Numpy array of lower bound values - Figure object - Axes object

Raises:

Type Description
ValueError

If the scale parameter is negative or zero.

Examples:

  • Load data and initialize distribution:
    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from statista.distributions import Gumbel
    >>> data = np.loadtxt("examples/data/time_series2.txt")
    >>> parameters = {"loc": 463.8040, "scale": 220.0724}
    >>> gumbel_dist = Gumbel(data, parameters)
    
  • Calculate confidence intervals
    >>> upper, lower = gumbel_dist.confidence_interval(alpha=0.1)
    
  • Generate a confidence interval plot:
    >>> upper, lower, fig, ax = gumbel_dist.confidence_interval(
    ...     alpha=0.1,
    ...     plot_figure=True,
    ...     marker_size=10
    ... )
    >>> plt.show()
    
    image
Source code in statista/distributions.py
def confidence_interval(
    self,
    alpha: float = 0.1,
    prob_non_exceed: np.ndarray = None,
    parameters: Dict[str, Union[float, Any]] = None,
    plot_figure: bool = False,
    **kwargs,
) -> Union[
    Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, Figure, Axes]
]:
    """Calculate confidence intervals for the Gumbel distribution quantiles.

    This method calculates the upper and lower bounds of the confidence interval
    for the quantiles of the Gumbel distribution. It can also generate a plot of the
    confidence intervals.

    Args:
        alpha: Significance level for the confidence interval.
            Default is 0.1 (90% confidence interval).
        prob_non_exceed: Non-exceedance probabilities for which to calculate quantiles.
            If None, uses the empirical CDF calculated using Weibull plotting positions.
        parameters: Dictionary of distribution parameters.
            Example: {"loc": 0.0, "scale": 1.0}
            - loc: Location parameter of the Gumbel distribution
            - scale: Scale parameter of the Gumbel distribution (must be positive)
            If None, uses the parameters provided during initialization.
        plot_figure: Whether to generate a plot of the confidence intervals.
            Default is False.
        **kwargs: Additional keyword arguments to pass to the plotting function.
            - fig_size: Size of the figure as a tuple (width, height).
              Default is (6, 6).
            - fontsize: Font size for plot labels.
              Default is 11.
            - marker_size: Size of markers in the plot.

    Returns:
        If plot_figure is False:
            Tuple containing:
            - Numpy array of upper bound values
            - Numpy array of lower bound values
        If plot_figure is True:
            Tuple containing:
            - Numpy array of upper bound values
            - Numpy array of lower bound values
            - Figure object
            - Axes object

    Raises:
        ValueError: If the scale parameter is negative or zero.

    Examples:
        - Load data and initialize distribution:
            ```python
            >>> import numpy as np
            >>> import matplotlib.pyplot as plt
            >>> from statista.distributions import Gumbel
            >>> data = np.loadtxt("examples/data/time_series2.txt")
            >>> parameters = {"loc": 463.8040, "scale": 220.0724}
            >>> gumbel_dist = Gumbel(data, parameters)

            ```
        - Calculate confidence intervals
            ```python
            >>> upper, lower = gumbel_dist.confidence_interval(alpha=0.1)

            ```
        - Generate a confidence interval plot:
            ```python
            >>> upper, lower, fig, ax = gumbel_dist.confidence_interval(
            ...     alpha=0.1,
            ...     plot_figure=True,
            ...     marker_size=10
            ... )
            >>> plt.show()

            ```
        ![image](./../_images/distributions/gumbel-confidence-interval.png)
    """
    # if no parameters are provided, take the parameters provided in the class initialization.
    if parameters is None:
        parameters = self.parameters

    scale = parameters.get("scale")
    if scale <= 0:
        raise ValueError("Scale parameter is negative")

    if prob_non_exceed is None:
        prob_non_exceed = PlottingPosition.weibul(self.data)
    else:
        # if the prob_non_exceed is given, check if the length is the same as the data
        if len(prob_non_exceed) != len(self.data):
            raise ValueError(
                "Length of prob_non_exceed does not match the length of data, use the `PlottingPosition.weibul(data)` "
                "to the get the non-exceedance probability"
            )

    qth = self._inv_cdf(prob_non_exceed, parameters)
    y = [-np.log(-np.log(j)) for j in prob_non_exceed]
    std_error = [
        (scale / np.sqrt(len(self.data)))
        * np.sqrt(1.1087 + 0.5140 * j + 0.6079 * j**2)
        for j in y
    ]
    v = norm.ppf(1 - alpha / 2)
    q_upper = np.array([qth[j] + v * std_error[j] for j in range(len(self.data))])
    q_lower = np.array([qth[j] - v * std_error[j] for j in range(len(self.data))])

    if plot_figure:
        fig, ax = Plot.confidence_level(
            qth, self.data, q_lower, q_upper, alpha=alpha, **kwargs
        )
        return q_upper, q_lower, fig, ax
    else:
        return q_upper, q_lower

plot(fig_size=(10, 5), xlabel='Actual data', ylabel='cdf', fontsize=15, cdf=None, parameters=None) #

Probability plot.

Probability Plot method calculates the theoretical values based on the Gumbel distribution parameters, theoretical cdf (or weibul), and calculates the confidence interval.

Parameters:

Name Type Description Default
fig_size Tuple[float, float]

tuple, Default is (10, 5). Size of the figure.

(10, 5)
cdf Union[ndarray, list]

[np.ndarray] theoretical cdf calculated using weibul or using the distribution cdf function.

None
fig_size Tuple[float, float]

[tuple] Default is (10, 5)

(10, 5)
xlabel str

[str] Default is "Actual data"

'Actual data'
ylabel str

[str] Default is "cdf"

'cdf'
fontsize int

[float] Default is 15.

15
parameters Dict[str, Union[float, Any]]

Dict[str, str] {"loc": val, "scale": val} - loc: [numeric] location parameter of the gumbel distribution. - scale: [numeric] scale parameter of the gumbel distribution.

None

Returns:

Name Type Description
Figure Figure

matplotlib figure object

Tuple[Axes, Axes]

Tuple[Axes, Axes]: matplotlib plot axes

Examples:

  • Instantiate the Gumbel class with the data and the parameters:
    >>> import matplotlib.pyplot as plt
    >>> data = np.loadtxt("examples/data/time_series2.txt")
    >>> parameters = {"loc": 463.8040, "scale": 220.0724}
    >>> gumbel_dist = Gumbel(data, parameters)
    
  • To calculate the confidence interval, we need to provide the confidence level (alpha).
    >>> fig, ax = gumbel_dist.plot()
    >>> print(fig)
    Figure(1000x500)
    >>> print(ax)
    (<Axes: xlabel='Actual data', ylabel='pdf'>, <Axes: xlabel='Actual data', ylabel='cdf'>)
    
    gumbel-plot
Source code in statista/distributions.py
def plot(
    self,
    fig_size: Tuple[float, float] = (10, 5),
    xlabel: str = "Actual data",
    ylabel: str = "cdf",
    fontsize: int = 15,
    cdf: Union[np.ndarray, list] = None,
    parameters: Dict[str, Union[float, Any]] = None,
) -> Tuple[Figure, Tuple[Axes, Axes]]:  # pylint: disable=arguments-differ
    """Probability plot.

    Probability Plot method calculates the theoretical values based on the Gumbel distribution
    parameters, theoretical cdf (or weibul), and calculates the confidence interval.

    Args:
        fig_size: tuple, Default is (10, 5).
            Size of the figure.
        cdf: [np.ndarray]
            theoretical cdf calculated using weibul or using the distribution cdf function.
        fig_size: [tuple]
            Default is (10, 5)
        xlabel: [str]
            Default is "Actual data"
        ylabel: [str]
            Default is "cdf"
        fontsize: [float]
            Default is 15.
        parameters: Dict[str, str]
            {"loc": val, "scale": val}
            - loc: [numeric]
                location parameter of the gumbel distribution.
            - scale: [numeric]
                scale parameter of the gumbel distribution.

    Returns:
        Figure:
            matplotlib figure object
        Tuple[Axes, Axes]:
            matplotlib plot axes

    Examples:
    - Instantiate the Gumbel class with the data and the parameters:
        ```python
        >>> import matplotlib.pyplot as plt
        >>> data = np.loadtxt("examples/data/time_series2.txt")
        >>> parameters = {"loc": 463.8040, "scale": 220.0724}
        >>> gumbel_dist = Gumbel(data, parameters)

        ```
    - To calculate the confidence interval, we need to provide the confidence level (`alpha`).
        ```python
        >>> fig, ax = gumbel_dist.plot()
        >>> print(fig)
        Figure(1000x500)
        >>> print(ax)
        (<Axes: xlabel='Actual data', ylabel='pdf'>, <Axes: xlabel='Actual data', ylabel='cdf'>)
        ```
    ![gumbel-plot](./../_images/gumbel-plot.png)
    """
    # if no parameters are provided, take the parameters provided in the class initialization.
    if parameters is None:
        parameters = self.parameters

    scale = parameters.get("scale")

    if scale <= 0:
        raise ValueError("Scale parameter is negative")

    if cdf is None:
        cdf = PlottingPosition.weibul(self.data)
    else:
        # if the cdf is given, check if the length is the same as the data
        if len(cdf) != len(self.data):
            raise ValueError(
                "Length of cdf does not match the length of data, use the `PlottingPosition.weibul(data)` "
                "to the get the non-exceedance probability"
            )

    q_x = np.linspace(
        float(self.data_sorted[0]), 1.5 * float(self.data_sorted[-1]), 10000
    )
    pdf_fitted: np.ndarray = self.pdf(parameters=parameters, data=q_x)
    cdf_fitted: np.ndarray = self.cdf(parameters=parameters, data=q_x)

    fig, ax = Plot.details(
        q_x,
        self.data,
        pdf_fitted,
        cdf_fitted,
        cdf,
        fig_size=fig_size,
        xlabel=xlabel,
        ylabel=ylabel,
        fontsize=fontsize,
    )

    return fig, ax

statista.distributions.GEV #

Bases: AbstractDistribution

GEV (Generalized Extreme value statistics)

  • The Generalized Extreme Value (GEV) distribution is used to model the largest or smallest value among a large set of independent, identically distributed random values.
  • The GEV distribution encompasses three types of distributions: Gumbel, Fréchet, and Weibull, which are distinguished by a shape parameter (:math:\xi (xi)).

  • The probability density function (PDF) of the Generalized-extreme-value distribution is:

    .. math:: f(x; \zeta, \delta, \xi)=\frac{1}{\delta}\mathrm{}{\mathrm{Q(x)}}^{\xi+1}\mathrm{ } e^{\mathrm{-Q(x)}}

    .. math:: Q(x; \zeta, \delta, \xi)= \begin{cases} \left(1+ \xi \left(\frac{x-\zeta}{\delta} \right) \right)^\frac{-1}{\xi} & \quad\land\xi\neq 0 \ e^{- \left(\frac{x-\zeta}{\delta} \right)} & \quad \land \xi=0 \end{cases} 🏷 gev-pdf

    Where the :math:\delta (delta) is the scale parameter, :math:\zeta (zeta) is the location parameter, and :math:\xi (xi) is the shape parameter.

  • The location parameter :math:\zeta shifts the distribution along the x-axis. It essentially determines the mode (peak) of the distribution and its location. Changing the location parameter moves the distribution left or right without altering its shape. The location parameter ranges from negative infinity to positive infinity.

  • The scale parameter :math:\delta controls the spread or dispersion of the distribution. A larger scale parameter results in a wider distribution, while a smaller scale parameter results in a narrower distribution. It must always be positive.
  • The shape parameter :math:\xi (xi) determines the shape of the distribution. The shape parameter can be positive, negative, or zero. The shape parameter is used to classify the GEV distribution into three types: :math:\xi = 0 Gumbel (Type I), :math:\xi > 0 Fréchet (Type II), and :math:\xi < 0 Weibull (Type III). The shape parameter determines the tail behavior of the distribution.

    In hydrology, the distribution is reparametrized with :math:k=-\xi (xi) (El Adlouni et al., 2008) The cumulative distribution functions.

  • The cumulative distribution functions.

    .. math:: F(x; \zeta, \delta, \xi)= \begin{cases} \exp\left(- \left(1+ \xi \left(\frac{x-\zeta}{\delta} \right) \right)^\frac{-1}{\xi} \right) & \quad\land\xi\neq 0 and 1 + \xi \left( \frac{x-\zeta}{\delta}\right) \ \exp\left(- \exp\left(- \frac{x-\zeta}{\delta} \right) \right) & \quad \land \xi=0 \end{cases} 🏷 gev-cdf

Source code in statista/distributions.py
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
class GEV(AbstractDistribution):
    """GEV (Generalized Extreme value statistics)

    - The Generalized Extreme Value (GEV) distribution is used to model the largest or smallest value among a large
        set of independent, identically distributed random values.
    - The GEV distribution encompasses three types of distributions: Gumbel, Fréchet, and Weibull, which are
        distinguished by a shape parameter (:math:`\\xi` (xi)).

    - The probability density function (PDF) of the Generalized-extreme-value distribution is:

        .. math::
            f(x; \\zeta, \\delta, \\xi)=\\frac{1}{\\delta}\\mathrm{*}{\\mathrm{Q(x)}}^{\\xi+1}\\mathrm{
            *} e^{\\mathrm{-Q(x)}}

        .. math::
            Q(x; \\zeta, \\delta, \\xi)=
            \\begin{cases}
                \\left(1+ \\xi \\left(\\frac{x-\\zeta}{\\delta} \\right) \\right)^\\frac{-1}{\\xi} &
                \\quad\\land\\xi\\neq 0 \\\\
                e^{- \\left(\\frac{x-\\zeta}{\\delta} \\right)} & \\quad \\land \\xi=0
            \\end{cases}
          :label: gev-pdf

        Where the :math:`\\delta` (delta) is the scale parameter, :math:`\\zeta` (zeta) is the location parameter,
        and :math:`\\xi` (xi) is the shape parameter.

    - The location parameter :math:`\\zeta` shifts the distribution along the x-axis. It essentially determines the mode
        (peak) of the distribution and its location. Changing the location parameter moves the distribution left or
        right without altering its shape. The location parameter ranges from negative infinity to positive infinity.
    - The scale parameter :math:`\\delta` controls the spread or dispersion of the distribution. A larger scale parameter
        results in a wider distribution, while a smaller scale parameter results in a narrower distribution. It must
        always be positive.
    - The shape parameter :math:`\\xi` (xi) determines the shape of the distribution. The shape parameter can be positive,
        negative, or zero. The shape parameter is used to classify the GEV distribution into three types: :math:`\\xi = 0`
        Gumbel (Type I), :math:`\\xi > 0` Fréchet (Type II), and :math:`\\xi < 0` Weibull (Type III). The shape
        parameter determines the tail behavior of the distribution.

        In hydrology, the distribution is reparametrized with :math:`k=-\\xi` (xi) (El Adlouni et al., 2008)
        The cumulative distribution functions.

    - The cumulative distribution functions.

        .. math::
            F(x; \\zeta, \\delta, \\xi)=
            \\begin{cases}
                \\exp\\left(- \\left(1+ \\xi \\left(\\frac{x-\\zeta}{\\delta} \\right) \\right)^\\frac{-1}{\\xi} \\right) &
                \\quad\\land\\xi\\neq 0 and 1 + \\xi \\left( \\frac{x-\\zeta}{\\delta}\\right) \\\\
                \\exp\\left(- \\exp\\left(- \\frac{x-\\zeta}{\\delta} \\right) \\right) & \\quad \\land \\xi=0
            \\end{cases}
          :label: gev-cdf

    """

    def __init__(
        self,
        data: Union[list, np.ndarray] = None,
        parameters: Dict[str, float] = None,
    ):
        """GEV.

        Args:
            data: [list]
                data time series.
            parameters: Dict[str, str]
                {"loc": val, "scale": val, "shape": value}

                - loc: [numeric]
                    location parameter of the GEV distribution.
                - scale: [numeric]
                    scale parameter of the GEV distribution.
                - shape: [numeric]
                    shape parameter of the GEV distribution.

        Examples:
            - First load the sample data.
                ```python
                >>> data = np.loadtxt("examples/data/gev.txt")

                ```
        - I nstantiate the Gumbel class only with the data.
            ```python
            >>> gev_dist = GEV(data)
            >>> print(gev_dist) # doctest: +SKIP
            <statista.distributions.Gumbel object at 0x000001CDDE9563F0>

            ```
        - You can also instantiate the Gumbel class with the data and the parameters if you already have them.
            ```python
            >>> parameters = {"loc": 0, "scale": 1, "shape": 0.1}
            >>> gev_dist = GEV(data, parameters)
            >>> print(gev_dist) # doctest: +SKIP
            <statista.distributions.Gumbel object at 0x000001CDDEB32C00>
            ```
        """
        super().__init__(data, parameters)
        pass

    @staticmethod
    def _pdf_eq(
        data: Union[list, np.ndarray], parameters: Dict[str, Union[float, Any]]
    ) -> np.ndarray:
        loc = parameters.get("loc")
        scale = parameters.get("scale")
        shape = parameters.get("shape")
        # pdf = []
        # for ts_i in ts:
        #     z = (ts_i - loc) / scale
        #
        #     # Gumbel
        #     if shape == 0:
        #         val = np.exp(-(z + np.exp(-z)))
        #         pdf.append((1 / scale) * val)
        #         continue
        #
        #     # GEV
        #     y = 1 - shape * z
        #     if y > ninf:
        #         # np.log(y) = ln(y)
        #         # ln is the inverse of e
        #         lnY = (-1 / shape) * np.log(y)
        #         val = np.exp(-(1 - shape) * lnY - np.exp(-lnY))
        #         pdf.append((1 / scale) * val)
        #         continue
        #
        #     if shape < 0:
        #         pdf.append(0)
        #         continue
        #     pdf.append(0)
        #
        # if len(pdf) == 1:
        #     pdf = pdf[0]

        # pdf = np.array(pdf)
        pdf = genextreme.pdf(data, loc=loc, scale=scale, c=shape)
        return pdf

    def pdf(
        self,
        plot_figure: bool = False,
        parameters: Dict[str, float] = None,
        data: Union[List[float], np.ndarray] = None,
        *args,
        **kwargs,
    ) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
        """pdf.

        Returns the value of GEV's pdf with parameters loc and scale at x.

        Args:
            parameters: Dict[str, float], optional, default is None.
                if not provided, the parameters provided in the class initialization will be used.
                {"loc": val, "scale": val, "shape": value}

                - loc: [numeric]
                    location parameter of the GEV distribution.
                - scale: [numeric]
                    scale parameter of the GEV distribution.
                - shape: [numeric]
                    shape parameter of the GEV distribution.
            data : np.ndarray, default is None.
                array if you want to calculate the pdf for different data than the time series given to the constructor
                method.
            plot_figure: [bool]
                Default is False.
            kwargs:
                fig_size: [tuple]
                    Default is (6, 5).
                xlabel: [str]
                    Default is "Actual data".
                ylabel: [str]
                    Default is "pdf".
                fontsize: [int]
                    Default is 15

        Returns:
            pdf: [np.ndarray]
                probability density function pdf.
            fig: matplotlib.figure.Figure, if `plot_figure` is True.
                Figure object.
            ax: matplotlib.axes.Axes, if `plot_figure` is True.
                Axes object.

        Examples:
            - To calculate the pdf of the GEV distribution, we need to provide the parameters.
            ```python
            >>> import numpy as np
            >>> from statista.distributions import GEV
            >>> data = np.loadtxt("examples/data/gev.txt")
            >>> parameters = {"loc": 0, "scale": 1, "shape": 0.1}
            >>> gev_dist = GEV(data, parameters)
            >>> gev_dist.pdf(plot_figure=True)

            ```
            ![gev-random-pdf](./../_images/gev-random-pdf.png)
        """
        result = super().pdf(
            parameters=parameters,
            data=data,
            plot_figure=plot_figure,
            *args,
            **kwargs,
        )

        return result

    def random(
        self,
        size: int,
        parameters: Dict[str, Union[float, Any]] = None,
    ) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
        """Generate Random Variable.

        Args:
            size: int
                size of the random generated sample.
            parameters: Dict[str, str]
                {"loc": val, "scale": val}

                - loc: [numeric]
                    location parameter of the gumbel distribution.
                - scale: [numeric]
                    scale parameter of the gumbel distribution.

        Returns:
            data: [np.ndarray]
                random generated data.

        Examples:
            - To generate a random sample that follow the gumbel distribution with the parameters loc=0 and scale=1.
                ```python
                >>> parameters = {'loc': 0, 'scale': 1, "shape": 0.1}
                >>> gev_dist = GEV(parameters=parameters)
                >>> random_data = gev_dist.random(100)

                ```
            - then we can use the `pdf` method to plot the pdf of the random data.
                ```python
                >>> gev_dist.pdf(data=random_data, plot_figure=True, xlabel="Random data")

                ```
                ![gev-random-pdf](./../_images/gev-random-pdf.png)
                ```
                >>> gev_dist.cdf(data=random_data, plot_figure=True, xlabel="Random data")

                ```
                ![gev-random-cdf](./../_images/gev-random-cdf.png)
        """
        # if no parameters are provided, take the parameters provided in the class initialization.
        if parameters is None:
            parameters = self.parameters

        loc = parameters.get("loc")
        scale = parameters.get("scale")
        shape = parameters.get("shape")

        if scale <= 0:
            raise ValueError("Scale parameter is negative")

        random_data = genextreme.rvs(loc=loc, scale=scale, c=shape, size=size)
        return random_data

    @staticmethod
    def _cdf_eq(
        data: Union[list, np.ndarray], parameters: Dict[str, Union[float, Any]]
    ) -> np.ndarray:
        loc = parameters.get("loc")
        scale = parameters.get("scale")
        shape = parameters.get("shape")
        # equation https://www.rdocumentation.org/packages/evd/versions/2.3-6/topics/fextreme
        # z = (ts - loc) / scale
        # if shape == 0:
        #     # GEV is Gumbel distribution
        #     cdf = np.exp(-np.exp(-z))
        # else:
        #     y = 1 - shape * z
        #     cdf = list()
        #     for y_i in y:
        #         if y_i > ninf:
        #             logY = -np.log(y_i) / shape
        #             cdf.append(np.exp(-np.exp(-logY)))
        #         elif shape < 0:
        #             cdf.append(0)
        #         else:
        #             cdf.append(1)
        #
        # cdf = np.array(cdf)
        cdf = genextreme.cdf(data, c=shape, loc=loc, scale=scale)
        return cdf

    def cdf(
        self,
        plot_figure: bool = False,
        parameters: Dict[str, Union[float, Any]] = None,
        data: Union[List[float], np.ndarray] = None,
        *args,
        **kwargs,
    ) -> Union[
        Tuple[np.ndarray, Figure, Axes], np.ndarray
    ]:  # pylint: disable=arguments-differ
        """cdf.

        cdf calculates the value of Gumbel's cdf with parameters loc and scale at x.

        Args:
            parameters: Dict[str, str], optional, default is None.
                if not provided, the parameters provided in the class initialization will be used.
                {"loc": val, "scale": val}

                - loc: [numeric]
                    location parameter of the gumbel distribution.
                - scale: [numeric]
                    scale parameter of the gumbel distribution.
            data : np.ndarray, default is None.
                array if you want to calculate the cdf for different data than the time series given to the constructor
                method.
            plot_figure: [bool]
                Default is False.
            kwargs:
                fig_size: [tuple]
                    Default is (6, 5).
                xlabel: [str]
                    Default is "Actual data".
                ylabel: [str]
                    Default is "cdf".
                fontsize: [int]
                    Default is 15.

        Returns:
            cdf: [array]
                cumulative distribution function cdf.
            fig: matplotlib.figure.Figure, if `plot_figure` is True.
                Figure object.
            ax: matplotlib.axes.Axes, if `plot_figure` is True.
                Axes object.

        Examples:
            - To calculate the cdf of the GEV distribution, we need to provide the parameters.
                ```python
                >>> data = np.loadtxt("examples/data/gev.txt")
                >>> parameters = {"loc": 0, "scale": 1, "shape": 0.1}
                >>> gev_dist = GEV(data, parameters)
                >>> gev_dist.cdf(plot_figure=True)

                ```
            ![gev-random-cdf](./../_images/gev-random-cdf.png)
        """
        result = super().cdf(
            parameters=parameters,
            data=data,
            plot_figure=plot_figure,
            *args,
            **kwargs,
        )
        return result

    def return_period(self, parameters: Dict[str, Union[float, Any]], data: np.ndarray):
        """return_period.

            calculate return period calculates the return period for a list/array of values or a single value.

        Args:
            data:[list/array/float]
                value you want the coresponding return value for
            parameters: Dict[str, str]
                {"loc": val, "scale": val, "shape": value}

                - shape: [float]
                    shape parameter
                - loc: [float]
                    location parameter
                - scale: [float]
                    scale parameter

        Returns:
            float:
                return period
        """
        cdf = self.cdf(parameters, data=data)

        rp = 1 / (1 - cdf)

        return rp

    def fit_model(
        self,
        method: str = "mle",
        obj_func=None,
        threshold: Union[int, float, None] = None,
        test: bool = True,
    ) -> Dict[str, float]:
        """Fit model.

        fit_model estimates the distribution parameter based on MLM
        (Maximum likelihood method), if an objective function is entered as an input

        There are two likelihood functions (L1 and L2), one for values above some
        threshold (x>=C) and one for the values below (x < C), now the likeliest parameters
        are those at the max value of multiplication between two functions max(L1*L2).

        In this case, the L1 is still the product of multiplication of probability
        density function's values at xi, but the L2 is the probability that threshold
        value C will be exceeded (1-F(C)).

        Args:
            obj_func : [function]
                function to be used to get the distribution parameters.
            threshold : [numeric]
                Value you want to consider only the greater values.
            method : [string]
                'mle', 'mm', 'lmoments', optimization
            test: bool
                Default is True

        Returns:
            Dict[str, str]:
                {"loc": val, "scale": val}

                - loc: [numeric]
                    location parameter of the GEV distribution.
                - scale: [numeric]
                    scale parameter of the GEV distribution.
                - shape: [numeric]
                    shape parameter of the GEV distribution.

        Examples:
            - Instantiate the Gumbel class only with the data.
                ```python
                >>> data = np.loadtxt("examples/data/gev.txt")
                >>> gev_dist = GEV(data)

                ```
            - Then use the `fit_model` method to estimate the distribution parameters. the method takes the method as
                parameter, the default is 'mle'. the `test` parameter is used to perform the Kolmogorov-Smirnov and chisquare
                test.
                ```python
                >>> parameters = gev_dist.fit_model(method="mle", test=True)
                -----KS Test--------
                Statistic = 0.06
                Accept Hypothesis
                P value = 0.9942356257694902
                >>> print(parameters)
                {'loc': -0.05962776672431072, 'scale': 0.9114319092295455, 'shape': 0.03492066094614391}

                ```
            - You can also use the `lmoments` method to estimate the distribution parameters.
                ```python
                >>> parameters = gev_dist.fit_model(method="lmoments", test=True)
                -----KS Test--------
                Statistic = 0.05
                Accept Hypothesis
                P value = 0.9996892272702655
                >>> print(parameters)
                {'loc': -0.07182150513604696, 'scale': 0.9153288314267931, 'shape': 0.018944589308927475}

                ```
            - You can also use the `fit_model` method to estimate the distribution parameters using the 'optimization'
                method. the optimization method requires the `obj_func` and `threshold` parameter. the method
                will take the `threshold` number and try to fit the data values that are greater than the threshold.
                ```python
                >>> threshold = np.quantile(data, 0.80)
                >>> print(threshold)
                1.39252

                ```
        """
        # obj_func = lambda p, x: (-np.log(Gumbel.pdf(x, p[0], p[1]))).sum()
        # #first we make a simple Gumbel fit
        # Par1 = so.fmin(obj_func, [0.5,0.5], args=(np.array(data),))

        method = super().fit_model(method=method)
        if method == "mle" or method == "mm":
            param = list(genextreme.fit(self.data, method=method))
        elif method == "lmoments":
            lm = Lmoments(self.data)
            lmu = lm.Lmom()
            param = Lmoments.gev(lmu)
        elif method == "optimization":
            if obj_func is None or threshold is None:
                raise TypeError("obj_func and threshold should be numeric value")

            param = genextreme.fit(self.data, method="mle")
            # then we use the result as starting value for your truncated Gumbel fit
            param = so.fmin(
                obj_func,
                [threshold, param[0], param[1], param[2]],
                args=(self.data,),
                maxiter=500,
                maxfun=500,
            )
            param = [param[1], param[2], param[3]]
        else:
            raise ValueError(f"The given: {method} does not exist")

        param = {"loc": param[1], "scale": param[2], "shape": param[0]}
        self.parameters = param

        if test:
            self.ks()
            # try:
            #     self.chisquare()
            # except ValueError:
            #     print("chisquare test failed")

        return param

    def inverse_cdf(
        self,
        cdf: Union[np.ndarray, List[float]] = None,
        parameters: Dict[str, Union[float, Any]] = None,
    ) -> np.ndarray:
        """Theoretical Estimate.

        Theoretical Estimate method calculates the theoretical values based on a given non-exceedance probability

        Args:
            parameters: [list]
                location and scale parameters of the gumbel distribution.
            cdf: [list]
                cumulative distribution function/ Non-Exceedance probability.

        Returns:
            theoretical value: [numeric]
                Value based on the theoretical distribution

        Examples:
            - Instantiate the Gumbel class only with the data.
                ```python
                >>> data = np.loadtxt("examples/data/gev.txt")
                >>> parameters = {'loc': 0, 'scale': 1, "shape": 0.1}
                >>> gev_dist = GEV(data, parameters)

                ```
            - We will generate a random numbers between 0 and 1 and pass it to the inverse_cdf method as a probabilities
                to get the data that coresponds to these probabilities based on the distribution.
                ```python
                >>> cdf = [0.1, 0.2, 0.4, 0.6, 0.8, 0.9]
                >>> data_values = gev_dist.inverse_cdf(cdf)
                >>> print(data_values)
                [-0.86980039 -0.4873901   0.08704056  0.64966292  1.39286858  2.01513112]

                ```
        """
        if parameters is None:
            parameters = self.parameters

        if any(cdf) < 0 or any(cdf) > 1:
            raise ValueError("cdf Value Invalid")

        q_th = self._inv_cdf(cdf, parameters)
        return q_th

    @staticmethod
    def _inv_cdf(cdf: Union[np.ndarray, List[float]], parameters: Dict[str, float]):
        loc = parameters.get("loc")
        scale = parameters.get("scale")
        shape = parameters.get("shape")

        if scale <= 0:
            raise ValueError("Parameters Invalid")

        if shape is None:
            raise ValueError("Shape parameter should not be None")
        # q_th = list()
        # for i in range(len(cdf)):
        #     if cdf[i] <= 0 or cdf[i] >= 1:
        #         if cdf[i] == 0 and shape < 0:
        #             q_th.append(loc + scale / shape)
        #         elif cdf[i] == 1 and shape > 0:
        #             q_th.append(loc + scale / shape)
        #         else:
        #             raise ValueError(str(cdf[i]) + " value of cdf is Invalid")
        #     # cdf = np.array(cdf)
        #     Y = -np.log(-np.log(cdf[i]))
        #     if shape != 0:
        #         Y = (1 - np.exp(-1 * shape * Y)) / shape
        #
        #     q_th.append(loc + scale * Y)
        # q_th = np.array(q_th)
        # the main equation from scipy
        q_th = genextreme.ppf(cdf, shape, loc=loc, scale=scale)
        return q_th

    def ks(self):
        """Kolmogorov-Smirnov (KS) test.

        The smaller the D static, the more likely that the two samples are drawn from the same distribution
        IF Pvalue < significance level ------ reject

        Returns:
            Dstatic: [numeric]
                The smaller the D static the more likely that the two samples are drawn from the same distribution
            Pvalue : [numeric]
                IF Pvalue < significance level ------ reject the null hypothesis
        """
        return super().ks()

    def chisquare(self) -> tuple:
        """chisquare test"""
        return super().chisquare()

    def confidence_interval(
        self,
        alpha: float = 0.1,
        plot_figure: bool = False,
        prob_non_exceed: np.ndarray = None,
        parameters: Dict[str, Union[float, Any]] = None,
        state_function: callable = None,
        n_samples: int = 100,
        method: str = "lmoments",
        **kwargs,
    ) -> Union[
        Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, Figure, Axes]
    ]:  # pylint: disable=arguments-differ
        """confidence_interval.

        Args:
            parameters: Dict[str, str], optional, default is None.
                if not provided, the parameters provided in the class initialization will be used.
                {"loc": val, "scale": val, "shape": value}

                - loc: [numeric]
                    location parameter of the gumbel distribution.
                - scale: [numeric]
                    scale parameter of the gumbel distribution.
            prob_non_exceed : [list]
                Non-Exceedance probability
            alpha : [numeric]
                alpha or SignificanceLevel is a value of the confidence interval.
            state_function: callable, Default is GEV.ci_func
                function to calculate the confidence interval.
            n_samples: [int]
                number of samples generated by the bootstrap method Default is 100.
            method: [str]
                method used to fit the generated samples from the bootstrap method ["lmoments", "mle", "mm"]. Default is
                "lmoments".
            plot_figure: bool, optional, default is False.
                to plot the confidence interval.

        Returns:
            q_upper: [list]
                upper-bound coresponding to the confidence interval.
            q_lower: [list]
                lower-bound coresponding to the confidence interval.
            fig: matplotlib.figure.Figure
                Figure object.
            ax: matplotlib.axes.Axes
                Axes object.

        Examples:
            - Instantiate the GEV class with the data and the parameters.
                ```python
                >>> import matplotlib.pyplot as plt
                >>> data = np.loadtxt("examples/data/time_series1.txt")
                >>> parameters = {"loc": 16.3928, "scale": 0.70054, "shape": -0.1614793,}
                >>> gev_dist = GEV(data, parameters)

                ```
            - to calculate the confidence interval, we need to provide the confidence level (`alpha`).
                ```python
                >>> upper, lower = gev_dist.confidence_interval(alpha=0.1)

                ```
            - You can also plot confidence intervals
                ```python
                >>> upper, lower, fig, ax = gev_dist.confidence_interval(alpha=0.1, plot_figure=True, marker_size=10)

                ```
            ![gev-confidence-interval](./../_images/gev-confidence-interval.png)
        """
        # if no parameters are provided, take the parameters provided in the class initialization.
        if parameters is None:
            parameters = self.parameters

        scale = parameters.get("scale")
        if scale <= 0:
            raise ValueError("Scale parameter is negative")

        if prob_non_exceed is None:
            prob_non_exceed = PlottingPosition.weibul(self.data)
        else:
            # if the prob_non_exceed is given, check if the length is the same as the data
            if len(prob_non_exceed) != len(self.data):
                raise ValueError(
                    "Length of prob_non_exceed does not match the length of data, use the `PlottingPosition.weibul(data)` "
                    "to the get the non-exceedance probability"
                )
        if state_function is None:
            state_function = GEV.ci_func

        ci = ConfidenceInterval.boot_strap(
            self.data,
            state_function=state_function,
            gevfit=parameters,
            F=prob_non_exceed,
            alpha=alpha,
            n_samples=n_samples,
            method=method,
            **kwargs,
        )
        q_lower = ci["lb"]
        q_upper = ci["ub"]

        if plot_figure:
            qth = self._inv_cdf(prob_non_exceed, parameters)
            fig, ax = Plot.confidence_level(
                qth, self.data, q_lower, q_upper, alpha=alpha, **kwargs
            )
            return q_upper, q_lower, fig, ax
        else:
            return q_upper, q_lower

    def plot(
        self,
        fig_size=(10, 5),
        xlabel="Actual data",
        ylabel="cdf",
        fontsize=15,
        cdf: Union[np.ndarray, list] = None,
        parameters: Dict[str, Union[float, Any]] = None,
    ) -> Tuple[Figure, Tuple[Axes, Axes]]:
        """Probability Plot.

        Probability Plot method calculates the theoretical values based on the Gumbel distribution
        parameters, theoretical cdf (or weibul), and calculates the confidence interval.

        Args:
            parameters: Dict[str, str]
                {"loc": val, "scale": val, shape: val}

                - loc: [numeric]
                    Location parameter of the GEV distribution.
                - scale: [numeric]
                    Scale parameter of the GEV distribution.
                - shape: [float, int]
                    Shape parameter for the GEV distribution.
            cdf: [list]
                Theoretical cdf calculated using weibul or using the distribution cdf function.
            fontsize: [numeric]
                Font size of the axis labels and legend
            ylabel: [string]
                y label string
            xlabel: [string]
                X label string
            fig_size: [tuple]
                size of the pdf and cdf figure

        Returns:
            Figure:
                matplotlib figure object
            Tuple[Axes, Axes]:
                matplotlib plot axes

        Examples:
            - Instantiate the Gumbel class with the data and the parameters.
                ```python
                >>> import numpy as np
                >>> data = np.loadtxt("examples/data/time_series1.txt")
                >>> parameters = {"loc": 16.3928, "scale": 0.70054, "shape": -0.1614793,}
                >>> gev_dist = GEV(data, parameters)

                ```
            - to calculate the confidence interval, we need to provide the confidence level (`alpha`).
                ```python
                >>> fig, ax = gumbel_dist.plot()
                >>> print(fig)
                Figure(1000x500)
                >>> print(ax)
                (<Axes: xlabel='Actual data', ylabel='pdf'>, <Axes: xlabel='Actual data', ylabel='cdf'>)

                ```
            ![gev-plot](./../_images/gev-plot.png)
        """
        # if no parameters are provided, take the parameters provided in the class initialization.
        if parameters is None:
            parameters = self.parameters
        scale = parameters.get("scale")

        if scale <= 0:
            raise ValueError("Scale parameter is negative")

        if cdf is None:
            cdf = PlottingPosition.weibul(self.data)
        else:
            # if the prob_non_exceed is given, check if the length is the same as the data
            if len(cdf) != len(self.data):
                raise ValueError(
                    "Length of prob_non_exceed does not match the length of data, use the `PlottingPosition.weibul(data)` "
                    "to the get the non-exceedance probability"
                )

        q_x = np.linspace(
            float(self.data_sorted[0]), 1.5 * float(self.data_sorted[-1]), 10000
        )
        pdf_fitted = self.pdf(parameters=parameters, data=q_x)
        cdf_fitted = self.cdf(parameters=parameters, data=q_x)

        fig, ax = Plot.details(
            q_x,
            self.data,
            pdf_fitted,
            cdf_fitted,
            cdf,
            fig_size=fig_size,
            xlabel=xlabel,
            ylabel=ylabel,
            fontsize=fontsize,
        )

        return fig, ax

        # The function to bootstrap

    @staticmethod
    def ci_func(data: Union[list, np.ndarray], **kwargs):
        """GEV distribution function.

        Parameters
        ----------
        data: [list, np.ndarray]
            time series
        kwargs:
            gevfit: [list]
                GEV parameter [shape, location, scale]
            F: [list]
                Non-Exceedance probability
            method: [str]
                method used to fit the generated samples from the bootstrap method ["lmoments", "mle", "mm"]. Default is
                "lmoments".
        """
        gevfit = kwargs["gevfit"]
        prob_non_exceed = kwargs["F"]
        method = kwargs["method"]
        # generate theoretical estimates based on a random cdf, and the dist parameters
        sample = GEV._inv_cdf(np.random.rand(len(data)), gevfit)

        # get parameters based on the new generated sample
        dist = GEV(sample)
        new_param = dist.fit_model(method=method, test=False)

        # return period
        # T = np.arange(0.1, 999.1, 0.1) + 1
        # +1 in order not to make 1- 1/0.1 = -9
        # T = np.linspace(0.1, 999, len(data)) + 1
        # coresponding theoretical estimate to T
        # prob_non_exceed = 1 - 1 / T
        q_th = GEV._inv_cdf(prob_non_exceed, new_param)

        res = list(new_param.values())
        res.extend(q_th)
        return tuple(res)

__init__(data=None, parameters=None) #

GEV.

Parameters:

Name Type Description Default
data Union[list, ndarray]

[list] data time series.

None
parameters Dict[str, float]

Dict[str, str]

  • loc: [numeric] location parameter of the GEV distribution.
  • scale: [numeric] scale parameter of the GEV distribution.
  • shape: [numeric] shape parameter of the GEV distribution.
None

Examples:

  • First load the sample data.
    >>> data = np.loadtxt("examples/data/gev.txt")
    
  • I nstantiate the Gumbel class only with the data.
    >>> gev_dist = GEV(data)
    >>> print(gev_dist) # doctest: +SKIP
    <statista.distributions.Gumbel object at 0x000001CDDE9563F0>
    
  • You can also instantiate the Gumbel class with the data and the parameters if you already have them.
    >>> parameters = {"loc": 0, "scale": 1, "shape": 0.1}
    >>> gev_dist = GEV(data, parameters)
    >>> print(gev_dist) # doctest: +SKIP
    <statista.distributions.Gumbel object at 0x000001CDDEB32C00>
    
Source code in statista/distributions.py
def __init__(
    self,
    data: Union[list, np.ndarray] = None,
    parameters: Dict[str, float] = None,
):
    """GEV.

    Args:
        data: [list]
            data time series.
        parameters: Dict[str, str]
            {"loc": val, "scale": val, "shape": value}

            - loc: [numeric]
                location parameter of the GEV distribution.
            - scale: [numeric]
                scale parameter of the GEV distribution.
            - shape: [numeric]
                shape parameter of the GEV distribution.

    Examples:
        - First load the sample data.
            ```python
            >>> data = np.loadtxt("examples/data/gev.txt")

            ```
    - I nstantiate the Gumbel class only with the data.
        ```python
        >>> gev_dist = GEV(data)
        >>> print(gev_dist) # doctest: +SKIP
        <statista.distributions.Gumbel object at 0x000001CDDE9563F0>

        ```
    - You can also instantiate the Gumbel class with the data and the parameters if you already have them.
        ```python
        >>> parameters = {"loc": 0, "scale": 1, "shape": 0.1}
        >>> gev_dist = GEV(data, parameters)
        >>> print(gev_dist) # doctest: +SKIP
        <statista.distributions.Gumbel object at 0x000001CDDEB32C00>
        ```
    """
    super().__init__(data, parameters)
    pass

pdf(plot_figure=False, parameters=None, data=None, *args, **kwargs) #

pdf.

Returns the value of GEV's pdf with parameters loc and scale at x.

Parameters:

Name Type Description Default
parameters Dict[str, float]

Dict[str, float], optional, default is None. if not provided, the parameters provided in the class initialization will be used.

  • loc: [numeric] location parameter of the GEV distribution.
  • scale: [numeric] scale parameter of the GEV distribution.
  • shape: [numeric] shape parameter of the GEV distribution.
None
data

np.ndarray, default is None. array if you want to calculate the pdf for different data than the time series given to the constructor method.

None
plot_figure bool

[bool] Default is False.

False
kwargs

fig_size: [tuple] Default is (6, 5). xlabel: [str] Default is "Actual data". ylabel: [str] Default is "pdf". fontsize: [int] Default is 15

{}

Returns:

Name Type Description
pdf Union[Tuple[ndarray, Figure, Any], ndarray]

[np.ndarray] probability density function pdf.

fig Union[Tuple[ndarray, Figure, Any], ndarray]

matplotlib.figure.Figure, if plot_figure is True. Figure object.

ax Union[Tuple[ndarray, Figure, Any], ndarray]

matplotlib.axes.Axes, if plot_figure is True. Axes object.

Examples:

  • To calculate the pdf of the GEV distribution, we need to provide the parameters.
    >>> import numpy as np
    >>> from statista.distributions import GEV
    >>> data = np.loadtxt("examples/data/gev.txt")
    >>> parameters = {"loc": 0, "scale": 1, "shape": 0.1}
    >>> gev_dist = GEV(data, parameters)
    >>> gev_dist.pdf(plot_figure=True)
    
    gev-random-pdf
Source code in statista/distributions.py
def pdf(
    self,
    plot_figure: bool = False,
    parameters: Dict[str, float] = None,
    data: Union[List[float], np.ndarray] = None,
    *args,
    **kwargs,
) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
    """pdf.

    Returns the value of GEV's pdf with parameters loc and scale at x.

    Args:
        parameters: Dict[str, float], optional, default is None.
            if not provided, the parameters provided in the class initialization will be used.
            {"loc": val, "scale": val, "shape": value}

            - loc: [numeric]
                location parameter of the GEV distribution.
            - scale: [numeric]
                scale parameter of the GEV distribution.
            - shape: [numeric]
                shape parameter of the GEV distribution.
        data : np.ndarray, default is None.
            array if you want to calculate the pdf for different data than the time series given to the constructor
            method.
        plot_figure: [bool]
            Default is False.
        kwargs:
            fig_size: [tuple]
                Default is (6, 5).
            xlabel: [str]
                Default is "Actual data".
            ylabel: [str]
                Default is "pdf".
            fontsize: [int]
                Default is 15

    Returns:
        pdf: [np.ndarray]
            probability density function pdf.
        fig: matplotlib.figure.Figure, if `plot_figure` is True.
            Figure object.
        ax: matplotlib.axes.Axes, if `plot_figure` is True.
            Axes object.

    Examples:
        - To calculate the pdf of the GEV distribution, we need to provide the parameters.
        ```python
        >>> import numpy as np
        >>> from statista.distributions import GEV
        >>> data = np.loadtxt("examples/data/gev.txt")
        >>> parameters = {"loc": 0, "scale": 1, "shape": 0.1}
        >>> gev_dist = GEV(data, parameters)
        >>> gev_dist.pdf(plot_figure=True)

        ```
        ![gev-random-pdf](./../_images/gev-random-pdf.png)
    """
    result = super().pdf(
        parameters=parameters,
        data=data,
        plot_figure=plot_figure,
        *args,
        **kwargs,
    )

    return result

random(size, parameters=None) #

Generate Random Variable.

Parameters:

Name Type Description Default
size int

int size of the random generated sample.

required
parameters Dict[str, Union[float, Any]]

Dict[str, str]

  • loc: [numeric] location parameter of the gumbel distribution.
  • scale: [numeric] scale parameter of the gumbel distribution.
None

Returns:

Name Type Description
data Union[Tuple[ndarray, Figure, Any], ndarray]

[np.ndarray] random generated data.

Examples:

  • To generate a random sample that follow the gumbel distribution with the parameters loc=0 and scale=1.
    >>> parameters = {'loc': 0, 'scale': 1, "shape": 0.1}
    >>> gev_dist = GEV(parameters=parameters)
    >>> random_data = gev_dist.random(100)
    
  • then we can use the pdf method to plot the pdf of the random data.
    >>> gev_dist.pdf(data=random_data, plot_figure=True, xlabel="Random data")
    
    gev-random-pdf
    >>> gev_dist.cdf(data=random_data, plot_figure=True, xlabel="Random data")
    
    gev-random-cdf
Source code in statista/distributions.py
def random(
    self,
    size: int,
    parameters: Dict[str, Union[float, Any]] = None,
) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
    """Generate Random Variable.

    Args:
        size: int
            size of the random generated sample.
        parameters: Dict[str, str]
            {"loc": val, "scale": val}

            - loc: [numeric]
                location parameter of the gumbel distribution.
            - scale: [numeric]
                scale parameter of the gumbel distribution.

    Returns:
        data: [np.ndarray]
            random generated data.

    Examples:
        - To generate a random sample that follow the gumbel distribution with the parameters loc=0 and scale=1.
            ```python
            >>> parameters = {'loc': 0, 'scale': 1, "shape": 0.1}
            >>> gev_dist = GEV(parameters=parameters)
            >>> random_data = gev_dist.random(100)

            ```
        - then we can use the `pdf` method to plot the pdf of the random data.
            ```python
            >>> gev_dist.pdf(data=random_data, plot_figure=True, xlabel="Random data")

            ```
            ![gev-random-pdf](./../_images/gev-random-pdf.png)
            ```
            >>> gev_dist.cdf(data=random_data, plot_figure=True, xlabel="Random data")

            ```
            ![gev-random-cdf](./../_images/gev-random-cdf.png)
    """
    # if no parameters are provided, take the parameters provided in the class initialization.
    if parameters is None:
        parameters = self.parameters

    loc = parameters.get("loc")
    scale = parameters.get("scale")
    shape = parameters.get("shape")

    if scale <= 0:
        raise ValueError("Scale parameter is negative")

    random_data = genextreme.rvs(loc=loc, scale=scale, c=shape, size=size)
    return random_data

cdf(plot_figure=False, parameters=None, data=None, *args, **kwargs) #

cdf.

cdf calculates the value of Gumbel's cdf with parameters loc and scale at x.

Parameters:

Name Type Description Default
parameters Dict[str, Union[float, Any]]

Dict[str, str], optional, default is None. if not provided, the parameters provided in the class initialization will be used.

  • loc: [numeric] location parameter of the gumbel distribution.
  • scale: [numeric] scale parameter of the gumbel distribution.
None
data

np.ndarray, default is None. array if you want to calculate the cdf for different data than the time series given to the constructor method.

None
plot_figure bool

[bool] Default is False.

False
kwargs

fig_size: [tuple] Default is (6, 5). xlabel: [str] Default is "Actual data". ylabel: [str] Default is "cdf". fontsize: [int] Default is 15.

{}

Returns:

Name Type Description
cdf Union[Tuple[ndarray, Figure, Axes], ndarray]

[array] cumulative distribution function cdf.

fig Union[Tuple[ndarray, Figure, Axes], ndarray]

matplotlib.figure.Figure, if plot_figure is True. Figure object.

ax Union[Tuple[ndarray, Figure, Axes], ndarray]

matplotlib.axes.Axes, if plot_figure is True. Axes object.

Examples:

  • To calculate the cdf of the GEV distribution, we need to provide the parameters.
    >>> data = np.loadtxt("examples/data/gev.txt")
    >>> parameters = {"loc": 0, "scale": 1, "shape": 0.1}
    >>> gev_dist = GEV(data, parameters)
    >>> gev_dist.cdf(plot_figure=True)
    
    gev-random-cdf
Source code in statista/distributions.py
def cdf(
    self,
    plot_figure: bool = False,
    parameters: Dict[str, Union[float, Any]] = None,
    data: Union[List[float], np.ndarray] = None,
    *args,
    **kwargs,
) -> Union[
    Tuple[np.ndarray, Figure, Axes], np.ndarray
]:  # pylint: disable=arguments-differ
    """cdf.

    cdf calculates the value of Gumbel's cdf with parameters loc and scale at x.

    Args:
        parameters: Dict[str, str], optional, default is None.
            if not provided, the parameters provided in the class initialization will be used.
            {"loc": val, "scale": val}

            - loc: [numeric]
                location parameter of the gumbel distribution.
            - scale: [numeric]
                scale parameter of the gumbel distribution.
        data : np.ndarray, default is None.
            array if you want to calculate the cdf for different data than the time series given to the constructor
            method.
        plot_figure: [bool]
            Default is False.
        kwargs:
            fig_size: [tuple]
                Default is (6, 5).
            xlabel: [str]
                Default is "Actual data".
            ylabel: [str]
                Default is "cdf".
            fontsize: [int]
                Default is 15.

    Returns:
        cdf: [array]
            cumulative distribution function cdf.
        fig: matplotlib.figure.Figure, if `plot_figure` is True.
            Figure object.
        ax: matplotlib.axes.Axes, if `plot_figure` is True.
            Axes object.

    Examples:
        - To calculate the cdf of the GEV distribution, we need to provide the parameters.
            ```python
            >>> data = np.loadtxt("examples/data/gev.txt")
            >>> parameters = {"loc": 0, "scale": 1, "shape": 0.1}
            >>> gev_dist = GEV(data, parameters)
            >>> gev_dist.cdf(plot_figure=True)

            ```
        ![gev-random-cdf](./../_images/gev-random-cdf.png)
    """
    result = super().cdf(
        parameters=parameters,
        data=data,
        plot_figure=plot_figure,
        *args,
        **kwargs,
    )
    return result

return_period(parameters, data) #

return_period.

calculate return period calculates the return period for a list/array of values or a single value.

Parameters:

Name Type Description Default
data ndarray

[list/array/float] value you want the coresponding return value for

required
parameters Dict[str, Union[float, Any]]

Dict[str, str]

  • shape: [float] shape parameter
  • loc: [float] location parameter
  • scale: [float] scale parameter
required

Returns:

Name Type Description
float

return period

Source code in statista/distributions.py
def return_period(self, parameters: Dict[str, Union[float, Any]], data: np.ndarray):
    """return_period.

        calculate return period calculates the return period for a list/array of values or a single value.

    Args:
        data:[list/array/float]
            value you want the coresponding return value for
        parameters: Dict[str, str]
            {"loc": val, "scale": val, "shape": value}

            - shape: [float]
                shape parameter
            - loc: [float]
                location parameter
            - scale: [float]
                scale parameter

    Returns:
        float:
            return period
    """
    cdf = self.cdf(parameters, data=data)

    rp = 1 / (1 - cdf)

    return rp

fit_model(method='mle', obj_func=None, threshold=None, test=True) #

Fit model.

fit_model estimates the distribution parameter based on MLM (Maximum likelihood method), if an objective function is entered as an input

There are two likelihood functions (L1 and L2), one for values above some threshold (x>=C) and one for the values below (x < C), now the likeliest parameters are those at the max value of multiplication between two functions max(L1*L2).

In this case, the L1 is still the product of multiplication of probability density function's values at xi, but the L2 is the probability that threshold value C will be exceeded (1-F(C)).

Parameters:

Name Type Description Default
obj_func

[function] function to be used to get the distribution parameters.

None
threshold

[numeric] Value you want to consider only the greater values.

None
method

[string] 'mle', 'mm', 'lmoments', optimization

'mle'
test bool

bool Default is True

True

Returns:

Type Description
Dict[str, float]

Dict[str, str]:

  • loc: [numeric] location parameter of the GEV distribution.
  • scale: [numeric] scale parameter of the GEV distribution.
  • shape: [numeric] shape parameter of the GEV distribution.

Examples:

  • Instantiate the Gumbel class only with the data.
    >>> data = np.loadtxt("examples/data/gev.txt")
    >>> gev_dist = GEV(data)
    
  • Then use the fit_model method to estimate the distribution parameters. the method takes the method as parameter, the default is 'mle'. the test parameter is used to perform the Kolmogorov-Smirnov and chisquare test.
    >>> parameters = gev_dist.fit_model(method="mle", test=True)
    -----KS Test--------
    Statistic = 0.06
    Accept Hypothesis
    P value = 0.9942356257694902
    >>> print(parameters)
    {'loc': -0.05962776672431072, 'scale': 0.9114319092295455, 'shape': 0.03492066094614391}
    
  • You can also use the lmoments method to estimate the distribution parameters.
    >>> parameters = gev_dist.fit_model(method="lmoments", test=True)
    -----KS Test--------
    Statistic = 0.05
    Accept Hypothesis
    P value = 0.9996892272702655
    >>> print(parameters)
    {'loc': -0.07182150513604696, 'scale': 0.9153288314267931, 'shape': 0.018944589308927475}
    
  • You can also use the fit_model method to estimate the distribution parameters using the 'optimization' method. the optimization method requires the obj_func and threshold parameter. the method will take the threshold number and try to fit the data values that are greater than the threshold.
    >>> threshold = np.quantile(data, 0.80)
    >>> print(threshold)
    1.39252
    
Source code in statista/distributions.py
def fit_model(
    self,
    method: str = "mle",
    obj_func=None,
    threshold: Union[int, float, None] = None,
    test: bool = True,
) -> Dict[str, float]:
    """Fit model.

    fit_model estimates the distribution parameter based on MLM
    (Maximum likelihood method), if an objective function is entered as an input

    There are two likelihood functions (L1 and L2), one for values above some
    threshold (x>=C) and one for the values below (x < C), now the likeliest parameters
    are those at the max value of multiplication between two functions max(L1*L2).

    In this case, the L1 is still the product of multiplication of probability
    density function's values at xi, but the L2 is the probability that threshold
    value C will be exceeded (1-F(C)).

    Args:
        obj_func : [function]
            function to be used to get the distribution parameters.
        threshold : [numeric]
            Value you want to consider only the greater values.
        method : [string]
            'mle', 'mm', 'lmoments', optimization
        test: bool
            Default is True

    Returns:
        Dict[str, str]:
            {"loc": val, "scale": val}

            - loc: [numeric]
                location parameter of the GEV distribution.
            - scale: [numeric]
                scale parameter of the GEV distribution.
            - shape: [numeric]
                shape parameter of the GEV distribution.

    Examples:
        - Instantiate the Gumbel class only with the data.
            ```python
            >>> data = np.loadtxt("examples/data/gev.txt")
            >>> gev_dist = GEV(data)

            ```
        - Then use the `fit_model` method to estimate the distribution parameters. the method takes the method as
            parameter, the default is 'mle'. the `test` parameter is used to perform the Kolmogorov-Smirnov and chisquare
            test.
            ```python
            >>> parameters = gev_dist.fit_model(method="mle", test=True)
            -----KS Test--------
            Statistic = 0.06
            Accept Hypothesis
            P value = 0.9942356257694902
            >>> print(parameters)
            {'loc': -0.05962776672431072, 'scale': 0.9114319092295455, 'shape': 0.03492066094614391}

            ```
        - You can also use the `lmoments` method to estimate the distribution parameters.
            ```python
            >>> parameters = gev_dist.fit_model(method="lmoments", test=True)
            -----KS Test--------
            Statistic = 0.05
            Accept Hypothesis
            P value = 0.9996892272702655
            >>> print(parameters)
            {'loc': -0.07182150513604696, 'scale': 0.9153288314267931, 'shape': 0.018944589308927475}

            ```
        - You can also use the `fit_model` method to estimate the distribution parameters using the 'optimization'
            method. the optimization method requires the `obj_func` and `threshold` parameter. the method
            will take the `threshold` number and try to fit the data values that are greater than the threshold.
            ```python
            >>> threshold = np.quantile(data, 0.80)
            >>> print(threshold)
            1.39252

            ```
    """
    # obj_func = lambda p, x: (-np.log(Gumbel.pdf(x, p[0], p[1]))).sum()
    # #first we make a simple Gumbel fit
    # Par1 = so.fmin(obj_func, [0.5,0.5], args=(np.array(data),))

    method = super().fit_model(method=method)
    if method == "mle" or method == "mm":
        param = list(genextreme.fit(self.data, method=method))
    elif method == "lmoments":
        lm = Lmoments(self.data)
        lmu = lm.Lmom()
        param = Lmoments.gev(lmu)
    elif method == "optimization":
        if obj_func is None or threshold is None:
            raise TypeError("obj_func and threshold should be numeric value")

        param = genextreme.fit(self.data, method="mle")
        # then we use the result as starting value for your truncated Gumbel fit
        param = so.fmin(
            obj_func,
            [threshold, param[0], param[1], param[2]],
            args=(self.data,),
            maxiter=500,
            maxfun=500,
        )
        param = [param[1], param[2], param[3]]
    else:
        raise ValueError(f"The given: {method} does not exist")

    param = {"loc": param[1], "scale": param[2], "shape": param[0]}
    self.parameters = param

    if test:
        self.ks()
        # try:
        #     self.chisquare()
        # except ValueError:
        #     print("chisquare test failed")

    return param

inverse_cdf(cdf=None, parameters=None) #

Theoretical Estimate.

Theoretical Estimate method calculates the theoretical values based on a given non-exceedance probability

Parameters:

Name Type Description Default
parameters Dict[str, Union[float, Any]]

[list] location and scale parameters of the gumbel distribution.

None
cdf Union[ndarray, List[float]]

[list] cumulative distribution function/ Non-Exceedance probability.

None

Returns:

Type Description
ndarray

theoretical value: [numeric] Value based on the theoretical distribution

Examples:

  • Instantiate the Gumbel class only with the data.
    >>> data = np.loadtxt("examples/data/gev.txt")
    >>> parameters = {'loc': 0, 'scale': 1, "shape": 0.1}
    >>> gev_dist = GEV(data, parameters)
    
  • We will generate a random numbers between 0 and 1 and pass it to the inverse_cdf method as a probabilities to get the data that coresponds to these probabilities based on the distribution.
    >>> cdf = [0.1, 0.2, 0.4, 0.6, 0.8, 0.9]
    >>> data_values = gev_dist.inverse_cdf(cdf)
    >>> print(data_values)
    [-0.86980039 -0.4873901   0.08704056  0.64966292  1.39286858  2.01513112]
    
Source code in statista/distributions.py
def inverse_cdf(
    self,
    cdf: Union[np.ndarray, List[float]] = None,
    parameters: Dict[str, Union[float, Any]] = None,
) -> np.ndarray:
    """Theoretical Estimate.

    Theoretical Estimate method calculates the theoretical values based on a given non-exceedance probability

    Args:
        parameters: [list]
            location and scale parameters of the gumbel distribution.
        cdf: [list]
            cumulative distribution function/ Non-Exceedance probability.

    Returns:
        theoretical value: [numeric]
            Value based on the theoretical distribution

    Examples:
        - Instantiate the Gumbel class only with the data.
            ```python
            >>> data = np.loadtxt("examples/data/gev.txt")
            >>> parameters = {'loc': 0, 'scale': 1, "shape": 0.1}
            >>> gev_dist = GEV(data, parameters)

            ```
        - We will generate a random numbers between 0 and 1 and pass it to the inverse_cdf method as a probabilities
            to get the data that coresponds to these probabilities based on the distribution.
            ```python
            >>> cdf = [0.1, 0.2, 0.4, 0.6, 0.8, 0.9]
            >>> data_values = gev_dist.inverse_cdf(cdf)
            >>> print(data_values)
            [-0.86980039 -0.4873901   0.08704056  0.64966292  1.39286858  2.01513112]

            ```
    """
    if parameters is None:
        parameters = self.parameters

    if any(cdf) < 0 or any(cdf) > 1:
        raise ValueError("cdf Value Invalid")

    q_th = self._inv_cdf(cdf, parameters)
    return q_th

ks() #

Kolmogorov-Smirnov (KS) test.

The smaller the D static, the more likely that the two samples are drawn from the same distribution IF Pvalue < significance level ------ reject

Returns:

Name Type Description
Dstatic

[numeric] The smaller the D static the more likely that the two samples are drawn from the same distribution

Pvalue

[numeric] IF Pvalue < significance level ------ reject the null hypothesis

Source code in statista/distributions.py
def ks(self):
    """Kolmogorov-Smirnov (KS) test.

    The smaller the D static, the more likely that the two samples are drawn from the same distribution
    IF Pvalue < significance level ------ reject

    Returns:
        Dstatic: [numeric]
            The smaller the D static the more likely that the two samples are drawn from the same distribution
        Pvalue : [numeric]
            IF Pvalue < significance level ------ reject the null hypothesis
    """
    return super().ks()

chisquare() #

chisquare test

Source code in statista/distributions.py
def chisquare(self) -> tuple:
    """chisquare test"""
    return super().chisquare()

confidence_interval(alpha=0.1, plot_figure=False, prob_non_exceed=None, parameters=None, state_function=None, n_samples=100, method='lmoments', **kwargs) #

confidence_interval.

Parameters:

Name Type Description Default
parameters Dict[str, Union[float, Any]]

Dict[str, str], optional, default is None. if not provided, the parameters provided in the class initialization will be used.

  • loc: [numeric] location parameter of the gumbel distribution.
  • scale: [numeric] scale parameter of the gumbel distribution.
None
prob_non_exceed

[list] Non-Exceedance probability

None
alpha

[numeric] alpha or SignificanceLevel is a value of the confidence interval.

0.1
state_function callable

callable, Default is GEV.ci_func function to calculate the confidence interval.

None
n_samples int

[int] number of samples generated by the bootstrap method Default is 100.

100
method str

[str] method used to fit the generated samples from the bootstrap method ["lmoments", "mle", "mm"]. Default is "lmoments".

'lmoments'
plot_figure bool

bool, optional, default is False. to plot the confidence interval.

False

Returns:

Name Type Description
q_upper Union[Tuple[ndarray, ndarray], Tuple[ndarray, ndarray, Figure, Axes]]

[list] upper-bound coresponding to the confidence interval.

q_lower Union[Tuple[ndarray, ndarray], Tuple[ndarray, ndarray, Figure, Axes]]

[list] lower-bound coresponding to the confidence interval.

fig Union[Tuple[ndarray, ndarray], Tuple[ndarray, ndarray, Figure, Axes]]

matplotlib.figure.Figure Figure object.

ax Union[Tuple[ndarray, ndarray], Tuple[ndarray, ndarray, Figure, Axes]]

matplotlib.axes.Axes Axes object.

Examples:

  • Instantiate the GEV class with the data and the parameters.
    >>> import matplotlib.pyplot as plt
    >>> data = np.loadtxt("examples/data/time_series1.txt")
    >>> parameters = {"loc": 16.3928, "scale": 0.70054, "shape": -0.1614793,}
    >>> gev_dist = GEV(data, parameters)
    
  • to calculate the confidence interval, we need to provide the confidence level (alpha).
    >>> upper, lower = gev_dist.confidence_interval(alpha=0.1)
    
  • You can also plot confidence intervals
    >>> upper, lower, fig, ax = gev_dist.confidence_interval(alpha=0.1, plot_figure=True, marker_size=10)
    
    gev-confidence-interval
Source code in statista/distributions.py
def confidence_interval(
    self,
    alpha: float = 0.1,
    plot_figure: bool = False,
    prob_non_exceed: np.ndarray = None,
    parameters: Dict[str, Union[float, Any]] = None,
    state_function: callable = None,
    n_samples: int = 100,
    method: str = "lmoments",
    **kwargs,
) -> Union[
    Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, Figure, Axes]
]:  # pylint: disable=arguments-differ
    """confidence_interval.

    Args:
        parameters: Dict[str, str], optional, default is None.
            if not provided, the parameters provided in the class initialization will be used.
            {"loc": val, "scale": val, "shape": value}

            - loc: [numeric]
                location parameter of the gumbel distribution.
            - scale: [numeric]
                scale parameter of the gumbel distribution.
        prob_non_exceed : [list]
            Non-Exceedance probability
        alpha : [numeric]
            alpha or SignificanceLevel is a value of the confidence interval.
        state_function: callable, Default is GEV.ci_func
            function to calculate the confidence interval.
        n_samples: [int]
            number of samples generated by the bootstrap method Default is 100.
        method: [str]
            method used to fit the generated samples from the bootstrap method ["lmoments", "mle", "mm"]. Default is
            "lmoments".
        plot_figure: bool, optional, default is False.
            to plot the confidence interval.

    Returns:
        q_upper: [list]
            upper-bound coresponding to the confidence interval.
        q_lower: [list]
            lower-bound coresponding to the confidence interval.
        fig: matplotlib.figure.Figure
            Figure object.
        ax: matplotlib.axes.Axes
            Axes object.

    Examples:
        - Instantiate the GEV class with the data and the parameters.
            ```python
            >>> import matplotlib.pyplot as plt
            >>> data = np.loadtxt("examples/data/time_series1.txt")
            >>> parameters = {"loc": 16.3928, "scale": 0.70054, "shape": -0.1614793,}
            >>> gev_dist = GEV(data, parameters)

            ```
        - to calculate the confidence interval, we need to provide the confidence level (`alpha`).
            ```python
            >>> upper, lower = gev_dist.confidence_interval(alpha=0.1)

            ```
        - You can also plot confidence intervals
            ```python
            >>> upper, lower, fig, ax = gev_dist.confidence_interval(alpha=0.1, plot_figure=True, marker_size=10)

            ```
        ![gev-confidence-interval](./../_images/gev-confidence-interval.png)
    """
    # if no parameters are provided, take the parameters provided in the class initialization.
    if parameters is None:
        parameters = self.parameters

    scale = parameters.get("scale")
    if scale <= 0:
        raise ValueError("Scale parameter is negative")

    if prob_non_exceed is None:
        prob_non_exceed = PlottingPosition.weibul(self.data)
    else:
        # if the prob_non_exceed is given, check if the length is the same as the data
        if len(prob_non_exceed) != len(self.data):
            raise ValueError(
                "Length of prob_non_exceed does not match the length of data, use the `PlottingPosition.weibul(data)` "
                "to the get the non-exceedance probability"
            )
    if state_function is None:
        state_function = GEV.ci_func

    ci = ConfidenceInterval.boot_strap(
        self.data,
        state_function=state_function,
        gevfit=parameters,
        F=prob_non_exceed,
        alpha=alpha,
        n_samples=n_samples,
        method=method,
        **kwargs,
    )
    q_lower = ci["lb"]
    q_upper = ci["ub"]

    if plot_figure:
        qth = self._inv_cdf(prob_non_exceed, parameters)
        fig, ax = Plot.confidence_level(
            qth, self.data, q_lower, q_upper, alpha=alpha, **kwargs
        )
        return q_upper, q_lower, fig, ax
    else:
        return q_upper, q_lower

plot(fig_size=(10, 5), xlabel='Actual data', ylabel='cdf', fontsize=15, cdf=None, parameters=None) #

Probability Plot.

Probability Plot method calculates the theoretical values based on the Gumbel distribution parameters, theoretical cdf (or weibul), and calculates the confidence interval.

Parameters:

Name Type Description Default
parameters Dict[str, Union[float, Any]]

Dict[str, str]

  • loc: [numeric] Location parameter of the GEV distribution.
  • scale: [numeric] Scale parameter of the GEV distribution.
  • shape: [float, int] Shape parameter for the GEV distribution.
None
cdf Union[ndarray, list]

[list] Theoretical cdf calculated using weibul or using the distribution cdf function.

None
fontsize

[numeric] Font size of the axis labels and legend

15
ylabel

[string] y label string

'cdf'
xlabel

[string] X label string

'Actual data'
fig_size

[tuple] size of the pdf and cdf figure

(10, 5)

Returns:

Name Type Description
Figure Figure

matplotlib figure object

Tuple[Axes, Axes]

Tuple[Axes, Axes]: matplotlib plot axes

Examples:

  • Instantiate the Gumbel class with the data and the parameters.
    >>> import numpy as np
    >>> data = np.loadtxt("examples/data/time_series1.txt")
    >>> parameters = {"loc": 16.3928, "scale": 0.70054, "shape": -0.1614793,}
    >>> gev_dist = GEV(data, parameters)
    
  • to calculate the confidence interval, we need to provide the confidence level (alpha).
    >>> fig, ax = gumbel_dist.plot()
    >>> print(fig)
    Figure(1000x500)
    >>> print(ax)
    (<Axes: xlabel='Actual data', ylabel='pdf'>, <Axes: xlabel='Actual data', ylabel='cdf'>)
    
    gev-plot
Source code in statista/distributions.py
def plot(
    self,
    fig_size=(10, 5),
    xlabel="Actual data",
    ylabel="cdf",
    fontsize=15,
    cdf: Union[np.ndarray, list] = None,
    parameters: Dict[str, Union[float, Any]] = None,
) -> Tuple[Figure, Tuple[Axes, Axes]]:
    """Probability Plot.

    Probability Plot method calculates the theoretical values based on the Gumbel distribution
    parameters, theoretical cdf (or weibul), and calculates the confidence interval.

    Args:
        parameters: Dict[str, str]
            {"loc": val, "scale": val, shape: val}

            - loc: [numeric]
                Location parameter of the GEV distribution.
            - scale: [numeric]
                Scale parameter of the GEV distribution.
            - shape: [float, int]
                Shape parameter for the GEV distribution.
        cdf: [list]
            Theoretical cdf calculated using weibul or using the distribution cdf function.
        fontsize: [numeric]
            Font size of the axis labels and legend
        ylabel: [string]
            y label string
        xlabel: [string]
            X label string
        fig_size: [tuple]
            size of the pdf and cdf figure

    Returns:
        Figure:
            matplotlib figure object
        Tuple[Axes, Axes]:
            matplotlib plot axes

    Examples:
        - Instantiate the Gumbel class with the data and the parameters.
            ```python
            >>> import numpy as np
            >>> data = np.loadtxt("examples/data/time_series1.txt")
            >>> parameters = {"loc": 16.3928, "scale": 0.70054, "shape": -0.1614793,}
            >>> gev_dist = GEV(data, parameters)

            ```
        - to calculate the confidence interval, we need to provide the confidence level (`alpha`).
            ```python
            >>> fig, ax = gumbel_dist.plot()
            >>> print(fig)
            Figure(1000x500)
            >>> print(ax)
            (<Axes: xlabel='Actual data', ylabel='pdf'>, <Axes: xlabel='Actual data', ylabel='cdf'>)

            ```
        ![gev-plot](./../_images/gev-plot.png)
    """
    # if no parameters are provided, take the parameters provided in the class initialization.
    if parameters is None:
        parameters = self.parameters
    scale = parameters.get("scale")

    if scale <= 0:
        raise ValueError("Scale parameter is negative")

    if cdf is None:
        cdf = PlottingPosition.weibul(self.data)
    else:
        # if the prob_non_exceed is given, check if the length is the same as the data
        if len(cdf) != len(self.data):
            raise ValueError(
                "Length of prob_non_exceed does not match the length of data, use the `PlottingPosition.weibul(data)` "
                "to the get the non-exceedance probability"
            )

    q_x = np.linspace(
        float(self.data_sorted[0]), 1.5 * float(self.data_sorted[-1]), 10000
    )
    pdf_fitted = self.pdf(parameters=parameters, data=q_x)
    cdf_fitted = self.cdf(parameters=parameters, data=q_x)

    fig, ax = Plot.details(
        q_x,
        self.data,
        pdf_fitted,
        cdf_fitted,
        cdf,
        fig_size=fig_size,
        xlabel=xlabel,
        ylabel=ylabel,
        fontsize=fontsize,
    )

    return fig, ax

ci_func(data, **kwargs) staticmethod #

GEV distribution function.

Parameters#

data: [list, np.ndarray] time series kwargs: gevfit: [list] GEV parameter [shape, location, scale] F: [list] Non-Exceedance probability method: [str] method used to fit the generated samples from the bootstrap method ["lmoments", "mle", "mm"]. Default is "lmoments".

Source code in statista/distributions.py
@staticmethod
def ci_func(data: Union[list, np.ndarray], **kwargs):
    """GEV distribution function.

    Parameters
    ----------
    data: [list, np.ndarray]
        time series
    kwargs:
        gevfit: [list]
            GEV parameter [shape, location, scale]
        F: [list]
            Non-Exceedance probability
        method: [str]
            method used to fit the generated samples from the bootstrap method ["lmoments", "mle", "mm"]. Default is
            "lmoments".
    """
    gevfit = kwargs["gevfit"]
    prob_non_exceed = kwargs["F"]
    method = kwargs["method"]
    # generate theoretical estimates based on a random cdf, and the dist parameters
    sample = GEV._inv_cdf(np.random.rand(len(data)), gevfit)

    # get parameters based on the new generated sample
    dist = GEV(sample)
    new_param = dist.fit_model(method=method, test=False)

    # return period
    # T = np.arange(0.1, 999.1, 0.1) + 1
    # +1 in order not to make 1- 1/0.1 = -9
    # T = np.linspace(0.1, 999, len(data)) + 1
    # coresponding theoretical estimate to T
    # prob_non_exceed = 1 - 1 / T
    q_th = GEV._inv_cdf(prob_non_exceed, new_param)

    res = list(new_param.values())
    res.extend(q_th)
    return tuple(res)

statista.distributions.Exponential #

Bases: AbstractDistribution

Exponential distribution.

  • The exponential distribution assumes that small values occur more frequently than large values.

  • The probability density function (PDF) of the Exponential distribution is:

    .. math:: f(x; \delta, \beta) = \begin{cases} f(x; \delta, \beta) = \frac{1}{\beta} e^{-\frac{x - \delta}{\beta}} & \quad x \geq 0 \ 0 & \quad x < 0 \end{cases} 🏷 exp-equation

  • The probability density function above uses the location parameter :math:\delta and the scale parameter :math:\beta to define the distribution in a standardized form.

  • A common parameterization for the exponential distribution is in terms of the rate parameter :math:\lambda, such that :math:\lambda = 1 / \beta.
  • The Location Parameter (:math:\delta): This shifts the starting point of the distribution. The distribution is defined for :math:x \geq \delta.
  • Scale Parameter (:math:\beta): This determines the spread of the distribution. The rate parameter :math:\lambda is the inverse of the scale parameter, so :math:\lambda = \frac{1}{\beta}.

  • The cumulative distribution functions.

    .. math:: F(x; \delta, \beta) = \begin{cases} F(x; \delta, \beta) = 1 - e^{-\frac{x - \delta}{\beta}} & \quad x \geq 0 \ 0 & \quad x < 0 \end{cases} 🏷 exp-cdf

Source code in statista/distributions.py
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
class Exponential(AbstractDistribution):
    """Exponential distribution.

    - The exponential distribution assumes that small values occur more frequently than large values.

    - The probability density function (PDF) of the Exponential distribution is:

        .. math::
            f(x; \\delta, \\beta) =
            \\begin{cases}
                f(x; \\delta, \\beta) = \\frac{1}{\\beta} e^{-\\frac{x - \\delta}{\\beta}} & \\quad x \\geq 0 \\\\
                0 & \\quad x < 0
            \\end{cases}
          :label: exp-equation

    - The probability density function above uses the location parameter :math:`\\delta` and the scale parameter
        :math:`\\beta` to define the distribution in a standardized form.
    - A common parameterization for the exponential distribution is in terms of the rate parameter :math:`\\lambda`,
        such that :math:`\\lambda = 1 / \\beta`.
    - The Location Parameter (:math:`\\delta`): This shifts the starting point of the distribution. The distribution is
        defined for :math:`x \\geq \\delta`.
    - Scale Parameter (:math:`\\beta`): This determines the spread of the distribution. The rate parameter
        :math:`\\lambda` is the inverse of the scale parameter, so :math:`\\lambda = \\frac{1}{\\beta}`.

    - The cumulative distribution functions.

        .. math::
            F(x; \\delta, \\beta) =
            \\begin{cases}
                F(x; \\delta, \\beta) = 1 - e^{-\\frac{x - \\delta}{\\beta}} & \\quad x \\geq 0 \\\\
                0 & \\quad x < 0
            \\end{cases}
          :label: exp-cdf

    """

    def __init__(
        self,
        data: Union[list, np.ndarray] = None,
        parameters: Dict[str, float] = None,
    ):
        """Exponential Distribution.

        Parameters
        ----------
        data: [list]
            data time series.
        parameters: Dict[str, str]
            {"loc": val, "scale": val}

            - loc: [numeric]
                location parameter of the exponential distribution.
            - scale: [numeric]
                scale parameter of the exponential distribution.
        """
        super().__init__(data, parameters)

    @staticmethod
    def _pdf_eq(
        data: Union[list, np.ndarray], parameters: Dict[str, Union[float, Any]]
    ) -> np.ndarray:
        loc = parameters.get("loc")
        scale = parameters.get("scale")

        if scale <= 0:
            raise ValueError("Scale parameter is negative")

        # pdf = []
        #
        # for i in ts:
        #     Y = (i - loc) / scale
        #     if Y <= 0:
        #         pdf.append(0)
        #     else:
        #         pdf.append(np.exp(-Y) / scale)
        #
        # if len(pdf) == 1:
        #     pdf = pdf[0]

        pdf = expon.pdf(data, loc=loc, scale=scale)
        return pdf

    def pdf(
        self,
        plot_figure: bool = False,
        parameters: Dict[str, float] = None,
        data: Union[List[float], np.ndarray] = None,
        *args,
        **kwargs,
    ) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
        """pdf.

        Returns the value of Gumbel's pdf with parameters loc and scale at x.

        Parameters
        ----------
        parameters: Dict[str, str], optional, default is None.
            if not provided, the parameters provided in the class initialization will be used.
            {"loc": val, "scale": val}

            - loc: [numeric]
                location parameter of the gumbel distribution.
            - scale: [numeric]
                scale parameter of the gumbel distribution.
        data: np.ndarray, default is None.
            array if you want to calculate the pdf for different data than the time series given to the constructor
            method.
        plot_figure: [bool]
            Default is False.
        kwargs:
            fig_size: [tuple]
                Default is (6, 5).
            xlabel: [str]
                Default is "Actual data".
            ylabel: [str]
                Default is "pdf".
            fontsize: [int]
                Default is 15

        Returns
        -------
        pdf: [array]
            probability density function pdf.
        fig: matplotlib.figure.Figure, if `plot_figure` is True.
            Figure object.
        ax: matplotlib.axes.Axes, if `plot_figure` is True.
            Axes object.

        Examples
        --------
        >>> data = np.loadtxt("examples/data/expo.txt")
        >>> parameters = {'loc': 0, 'scale': 2}
        >>> expo_dist = Exponential(data, parameters)
        >>> expo_dist.pdf(plot_figure=True)

        .. image:: /_images/expo-random-pdf.png
            :align: center
        """
        result = super().pdf(
            parameters=parameters,
            data=data,
            plot_figure=plot_figure,
            *args,
            **kwargs,
        )

        return result

    def random(
        self,
        size: int,
        parameters: Dict[str, Union[float, Any]] = None,
    ) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
        """Generate Random Variable.

        Parameters
        ----------
        size: int
            size of the random generated sample.
        parameters: Dict[str, str]
            {"loc": val, "scale": val}

            - loc: [numeric]
                location parameter of the gumbel distribution.
            - scale: [numeric]
                scale parameter of the gumbel distribution.

        Returns
        -------
        data: [np.ndarray]
            random generated data.

        Examples
        --------
        - To generate a random sample that follow the gumbel distribution with the parameters loc=0 and scale=1.

            >>> parameters = {'loc': 0, 'scale': 2}
            >>> expon_dist = Exponential(parameters=parameters)
            >>> random_data = expon_dist.random(1000)

        - then we can use the `pdf` method to plot the pdf of the random data.

            >>> expon_dist.pdf(data=random_data, plot_figure=True, xlabel="Random data")

            .. image:: /_images/expo-random-pdf.png
                :align: center

            >>> expon_dist.cdf(data=random_data, plot_figure=True, xlabel="Random data")

            .. image:: /_images/expo-random-cdf.png
                :align: center
        """
        # if no parameters are provided, take the parameters provided in the class initialization.
        if parameters is None:
            parameters = self.parameters

        loc = parameters.get("loc")
        scale = parameters.get("scale")
        if scale <= 0:
            raise ValueError("Scale parameter is negative")

        random_data = expon.rvs(loc=loc, scale=scale, size=size)
        return random_data

    @staticmethod
    def _cdf_eq(
        data: Union[list, np.ndarray], parameters: Dict[str, Union[float, Any]]
    ) -> np.ndarray:
        loc = parameters.get("loc")
        scale = parameters.get("scale")
        if scale <= 0:
            raise ValueError("Scale parameter is negative")
        # if loc <= 0:
        #     raise ValueError("Threshold parameter should be greater than zero")
        # Y = (ts - loc) / scale
        # cdf = 1 - np.exp(-Y)
        #
        # for i in range(0, len(cdf)):
        #     if cdf[i] < 0:
        #         cdf[i] = 0
        cdf = expon.cdf(data, loc=loc, scale=scale)
        return cdf

    def cdf(
        self,
        plot_figure: bool = False,
        parameters: Dict[str, Union[float, Any]] = None,
        data: Union[List[float], np.ndarray] = None,
        *args,
        **kwargs,
    ) -> Union[
        Tuple[np.ndarray, Figure, Any], np.ndarray
    ]:  # pylint: disable=arguments-differ
        """cdf.

        cdf calculates the value of Gumbel's cdf with parameters loc and scale at x.

        parameter:
        ----------
        parameters: Dict[str, str], optional, default is None.
            if not provided, the parameters provided in the class initialization will be used.
            {"loc": val, "scale": val}

            - loc: [numeric]
                location parameter of the gumbel distribution.
            - scale: [numeric]
                scale parameter of the gumbel distribution.
        data: np.ndarray, default is None.
            array if you want to calculate the cdf for different data than the time series given to the constructor
            method.
        plot_figure: [bool]
            Default is False.
        kwargs:
            fig_size: [tuple]
                Default is (6, 5).
            xlabel: [str]
                Default is "Actual data".
            ylabel: [str]
                Default is "cdf".
            fontsize: [int]
                Default is 15.

        Returns
        -------
        cdf: [array]
            probability density function cdf.
        fig: matplotlib.figure.Figure, if `plot_figure` is True.
            Figure object.
        ax: matplotlib.axes.Axes, if `plot_figure` is True.
            Axes object.

        Examples
        --------
        >>> data = np.loadtxt("examples/data/expo.txt")
        >>> parameters = {'loc': 0, 'scale': 2}
        >>> expo_dist = Exponential(data, parameters)
        >>> expo_dist.cdf(plot_figure=True)  # doctest: +SKIP

        .. image:: /_images/expo-random-cdf.png
            :align: center
        """
        result = super().cdf(
            parameters=parameters,
            data=data,
            plot_figure=plot_figure,
            *args,
            **kwargs,
        )
        return result

    def fit_model(
        self,
        method: str = "mle",
        obj_func=None,
        threshold: Union[int, float, None] = None,
        test: bool = True,
    ) -> Dict[str, float]:
        """fit_model.

        fit_model estimates the distribution parameter based on MLM
        (Maximum likelihood method), if an objective function is entered as an input

        There are two likelihood functions (L1 and L2), one for values above some
        threshold (x>=C) and one for the values below (x < C), now the likeliest parameters
        are those at the max value of multiplication between two functions max(L1*L2).

        In this case, the L1 is still the product of multiplication of probability
        density function's values at xi, but the L2 is the probability that threshold
        value C will be exceeded (1-F(C)).

        Parameters
        ----------
        obj_func : [function]
            function to be used to get the distribution parameters.
        threshold : [numeric]
            Value you want to consider only the greater values.
        method : [string]
            'mle', 'mm', 'lmoments', optimization
        test: bool
            Default is True

        Returns
        -------
        param : [list]
            shape, loc, scale parameter of the gumbel distribution in that order.

        Examples
        --------
        - Instantiate the `Exponential` class only with the data.

            >>> data = np.loadtxt("examples/data/expo.txt")
            >>> expo_dist = Exponential(data)

        - Then use the `fit_model` method to estimate the distribution parameters. the method takes the method as
            parameter, the default is 'mle'. the `test` parameter is used to perform the Kolmogorov-Smirnov and chisquare
            test.

            >>> parameters = expo_dist.fit_model(method="mle", test=True)
            -----KS Test--------
            Statistic = 0.019
            Accept Hypothesis
            P value = 0.9937026761524456
            Out[14]: {'loc': 0.0009, 'scale': 2.0498075}
            >>> print(parameters)
            {'loc': 0, 'scale': 2}

        - You can also use the `lmoments` method to estimate the distribution parameters.

            >>> parameters = expo_dist.fit_model(method="lmoments", test=True)
            -----KS Test--------
            Statistic = 0.021
            Accept Hypothesis
            P value = 0.9802627322900355
            >>> print(parameters)
            {'loc': -0.00805012182182141, 'scale': 2.0587576218218215}
        """
        # obj_func = lambda p, x: (-np.log(Gumbel.pdf(x, p[0], p[1]))).sum()
        # #first we make a simple Gumbel fit
        # Par1 = so.fmin(obj_func, [0.5,0.5], args=(np.array(data),))
        method = super().fit_model(method=method)

        if method == "mle" or method == "mm":
            param = list(expon.fit(self.data, method=method))
        elif method == "lmoments":
            lm = Lmoments(self.data)
            lmu = lm.Lmom()
            param = Lmoments.exponential(lmu)
        elif method == "optimization":
            if obj_func is None or threshold is None:
                raise TypeError("obj_func and threshold should be numeric value")

            param = expon.fit(self.data, method="mle")
            # then we use the result as starting value for your truncated Gumbel fit
            param = so.fmin(
                obj_func,
                [threshold, param[0], param[1]],
                args=(self.data,),
                maxiter=500,
                maxfun=500,
            )
            param = [param[1], param[2]]
        else:
            raise ValueError(f"The given: {method} does not exist")

        param = {"loc": param[0], "scale": param[1]}
        self.parameters = param

        if test:
            self.ks()
            # try:
            #     self.chisquare()
            # except ValueError:
            #     print("chisquare test failed")

        return param

    def inverse_cdf(
        self,
        cdf: Union[np.ndarray, List[float]] = None,
        parameters: Dict[str, Union[float, Any]] = None,
    ) -> np.ndarray:
        """Theoretical Estimate.

        Theoretical Estimate method calculates the theoretical values based on a given  non-exceedance probability

        Parameters
        -----------
        parameters: Dict[str, str]
            {"loc": val, "scale": val}

            - loc: [numeric]
                location parameter of the gumbel distribution.
            - scale: [numeric]
                scale parameter of the gumbel distribution.
        cdf: [list]
            cumulative distribution function/ Non-Exceedance probability.

        Returns
        -------
        theoretical value: [numeric]
            Value based on the theoretical distribution

        Examples
        --------
        - Instantiate the Exponential class only with the data.

            >>> data = np.loadtxt("examples/data/expo.txt")
            >>> parameters = {'loc': 0, 'scale': 2}
            >>> expo_dist = Exponential(data, parameters)

        - We will generate a random numbers between 0 and 1 and pass it to the inverse_cdf method as a probabilities
            to get the data that coresponds to these probabilities based on the distribution.

            >>> cdf = [0.1, 0.2, 0.4, 0.6, 0.8, 0.9]
            >>> data_values = expo_dist.inverse_cdf(cdf)
            >>> print(data_values)
            [0.21072103 0.4462871  1.02165125 1.83258146 3.21887582 4.60517019]
        """
        if parameters is None:
            parameters = self.parameters

        loc = parameters.get("loc")
        scale = parameters.get("scale")

        if scale <= 0:
            raise ValueError("Parameters Invalid")

        if any(cdf) < 0 or any(cdf) > 1:
            raise ValueError("cdf Value Invalid")

        # the main equation from scipy
        q_th = expon.ppf(cdf, loc=loc, scale=scale)
        return q_th

    def ks(self):
        """Kolmogorov-Smirnov (KS) test.

        The smaller the D static, the more likely that the two samples are drawn from the same distribution
        IF Pvalue < significance level ------ reject

        Returns
        -------
            Dstatic: [numeric]
                The smaller the D static the more likely that the two samples are drawn from the same distribution
            Pvalue : [numeric]
                IF Pvalue < significance level ------ reject the null hypothesis
        """
        return super().ks()

    def chisquare(self) -> tuple:
        """chisquare test"""
        return super().chisquare()

__init__(data=None, parameters=None) #

Exponential Distribution.

Parameters#

data: [list] data time series. parameters: Dict[str, str]

- loc: [numeric]
    location parameter of the exponential distribution.
- scale: [numeric]
    scale parameter of the exponential distribution.
Source code in statista/distributions.py
def __init__(
    self,
    data: Union[list, np.ndarray] = None,
    parameters: Dict[str, float] = None,
):
    """Exponential Distribution.

    Parameters
    ----------
    data: [list]
        data time series.
    parameters: Dict[str, str]
        {"loc": val, "scale": val}

        - loc: [numeric]
            location parameter of the exponential distribution.
        - scale: [numeric]
            scale parameter of the exponential distribution.
    """
    super().__init__(data, parameters)

pdf(plot_figure=False, parameters=None, data=None, *args, **kwargs) #

pdf.

Returns the value of Gumbel's pdf with parameters loc and scale at x.

Parameters#

parameters: Dict[str, str], optional, default is None. if not provided, the parameters provided in the class initialization will be used.

- loc: [numeric]
    location parameter of the gumbel distribution.
- scale: [numeric]
    scale parameter of the gumbel distribution.

data: np.ndarray, default is None. array if you want to calculate the pdf for different data than the time series given to the constructor method. plot_figure: [bool] Default is False. kwargs: fig_size: [tuple] Default is (6, 5). xlabel: [str] Default is "Actual data". ylabel: [str] Default is "pdf". fontsize: [int] Default is 15

Returns#

pdf: [array] probability density function pdf. fig: matplotlib.figure.Figure, if plot_figure is True. Figure object. ax: matplotlib.axes.Axes, if plot_figure is True. Axes object.

Examples#

data = np.loadtxt("examples/data/expo.txt") parameters = {'loc': 0, 'scale': 2} expo_dist = Exponential(data, parameters) expo_dist.pdf(plot_figure=True)

.. image:: /_images/expo-random-pdf.png :align: center

Source code in statista/distributions.py
def pdf(
    self,
    plot_figure: bool = False,
    parameters: Dict[str, float] = None,
    data: Union[List[float], np.ndarray] = None,
    *args,
    **kwargs,
) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
    """pdf.

    Returns the value of Gumbel's pdf with parameters loc and scale at x.

    Parameters
    ----------
    parameters: Dict[str, str], optional, default is None.
        if not provided, the parameters provided in the class initialization will be used.
        {"loc": val, "scale": val}

        - loc: [numeric]
            location parameter of the gumbel distribution.
        - scale: [numeric]
            scale parameter of the gumbel distribution.
    data: np.ndarray, default is None.
        array if you want to calculate the pdf for different data than the time series given to the constructor
        method.
    plot_figure: [bool]
        Default is False.
    kwargs:
        fig_size: [tuple]
            Default is (6, 5).
        xlabel: [str]
            Default is "Actual data".
        ylabel: [str]
            Default is "pdf".
        fontsize: [int]
            Default is 15

    Returns
    -------
    pdf: [array]
        probability density function pdf.
    fig: matplotlib.figure.Figure, if `plot_figure` is True.
        Figure object.
    ax: matplotlib.axes.Axes, if `plot_figure` is True.
        Axes object.

    Examples
    --------
    >>> data = np.loadtxt("examples/data/expo.txt")
    >>> parameters = {'loc': 0, 'scale': 2}
    >>> expo_dist = Exponential(data, parameters)
    >>> expo_dist.pdf(plot_figure=True)

    .. image:: /_images/expo-random-pdf.png
        :align: center
    """
    result = super().pdf(
        parameters=parameters,
        data=data,
        plot_figure=plot_figure,
        *args,
        **kwargs,
    )

    return result

random(size, parameters=None) #

Generate Random Variable.

Parameters#

size: int size of the random generated sample. parameters: Dict[str, str]

- loc: [numeric]
    location parameter of the gumbel distribution.
- scale: [numeric]
    scale parameter of the gumbel distribution.
Returns#

data: [np.ndarray] random generated data.

Examples#
  • To generate a random sample that follow the gumbel distribution with the parameters loc=0 and scale=1.

    parameters = {'loc': 0, 'scale': 2} expon_dist = Exponential(parameters=parameters) random_data = expon_dist.random(1000)

  • then we can use the pdf method to plot the pdf of the random data.

    expon_dist.pdf(data=random_data, plot_figure=True, xlabel="Random data")

    .. image:: /_images/expo-random-pdf.png :align: center

    expon_dist.cdf(data=random_data, plot_figure=True, xlabel="Random data")

    .. image:: /_images/expo-random-cdf.png :align: center

Source code in statista/distributions.py
def random(
    self,
    size: int,
    parameters: Dict[str, Union[float, Any]] = None,
) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
    """Generate Random Variable.

    Parameters
    ----------
    size: int
        size of the random generated sample.
    parameters: Dict[str, str]
        {"loc": val, "scale": val}

        - loc: [numeric]
            location parameter of the gumbel distribution.
        - scale: [numeric]
            scale parameter of the gumbel distribution.

    Returns
    -------
    data: [np.ndarray]
        random generated data.

    Examples
    --------
    - To generate a random sample that follow the gumbel distribution with the parameters loc=0 and scale=1.

        >>> parameters = {'loc': 0, 'scale': 2}
        >>> expon_dist = Exponential(parameters=parameters)
        >>> random_data = expon_dist.random(1000)

    - then we can use the `pdf` method to plot the pdf of the random data.

        >>> expon_dist.pdf(data=random_data, plot_figure=True, xlabel="Random data")

        .. image:: /_images/expo-random-pdf.png
            :align: center

        >>> expon_dist.cdf(data=random_data, plot_figure=True, xlabel="Random data")

        .. image:: /_images/expo-random-cdf.png
            :align: center
    """
    # if no parameters are provided, take the parameters provided in the class initialization.
    if parameters is None:
        parameters = self.parameters

    loc = parameters.get("loc")
    scale = parameters.get("scale")
    if scale <= 0:
        raise ValueError("Scale parameter is negative")

    random_data = expon.rvs(loc=loc, scale=scale, size=size)
    return random_data

cdf(plot_figure=False, parameters=None, data=None, *args, **kwargs) #

cdf.

cdf calculates the value of Gumbel's cdf with parameters loc and scale at x.

parameter:#

parameters: Dict[str, str], optional, default is None. if not provided, the parameters provided in the class initialization will be used.

- loc: [numeric]
    location parameter of the gumbel distribution.
- scale: [numeric]
    scale parameter of the gumbel distribution.

data: np.ndarray, default is None. array if you want to calculate the cdf for different data than the time series given to the constructor method. plot_figure: [bool] Default is False. kwargs: fig_size: [tuple] Default is (6, 5). xlabel: [str] Default is "Actual data". ylabel: [str] Default is "cdf". fontsize: [int] Default is 15.

Returns#

cdf: [array] probability density function cdf. fig: matplotlib.figure.Figure, if plot_figure is True. Figure object. ax: matplotlib.axes.Axes, if plot_figure is True. Axes object.

Examples#

data = np.loadtxt("examples/data/expo.txt") parameters = {'loc': 0, 'scale': 2} expo_dist = Exponential(data, parameters) expo_dist.cdf(plot_figure=True) # doctest: +SKIP

.. image:: /_images/expo-random-cdf.png :align: center

Source code in statista/distributions.py
def cdf(
    self,
    plot_figure: bool = False,
    parameters: Dict[str, Union[float, Any]] = None,
    data: Union[List[float], np.ndarray] = None,
    *args,
    **kwargs,
) -> Union[
    Tuple[np.ndarray, Figure, Any], np.ndarray
]:  # pylint: disable=arguments-differ
    """cdf.

    cdf calculates the value of Gumbel's cdf with parameters loc and scale at x.

    parameter:
    ----------
    parameters: Dict[str, str], optional, default is None.
        if not provided, the parameters provided in the class initialization will be used.
        {"loc": val, "scale": val}

        - loc: [numeric]
            location parameter of the gumbel distribution.
        - scale: [numeric]
            scale parameter of the gumbel distribution.
    data: np.ndarray, default is None.
        array if you want to calculate the cdf for different data than the time series given to the constructor
        method.
    plot_figure: [bool]
        Default is False.
    kwargs:
        fig_size: [tuple]
            Default is (6, 5).
        xlabel: [str]
            Default is "Actual data".
        ylabel: [str]
            Default is "cdf".
        fontsize: [int]
            Default is 15.

    Returns
    -------
    cdf: [array]
        probability density function cdf.
    fig: matplotlib.figure.Figure, if `plot_figure` is True.
        Figure object.
    ax: matplotlib.axes.Axes, if `plot_figure` is True.
        Axes object.

    Examples
    --------
    >>> data = np.loadtxt("examples/data/expo.txt")
    >>> parameters = {'loc': 0, 'scale': 2}
    >>> expo_dist = Exponential(data, parameters)
    >>> expo_dist.cdf(plot_figure=True)  # doctest: +SKIP

    .. image:: /_images/expo-random-cdf.png
        :align: center
    """
    result = super().cdf(
        parameters=parameters,
        data=data,
        plot_figure=plot_figure,
        *args,
        **kwargs,
    )
    return result

fit_model(method='mle', obj_func=None, threshold=None, test=True) #

fit_model.

fit_model estimates the distribution parameter based on MLM (Maximum likelihood method), if an objective function is entered as an input

There are two likelihood functions (L1 and L2), one for values above some threshold (x>=C) and one for the values below (x < C), now the likeliest parameters are those at the max value of multiplication between two functions max(L1*L2).

In this case, the L1 is still the product of multiplication of probability density function's values at xi, but the L2 is the probability that threshold value C will be exceeded (1-F(C)).

Parameters#

obj_func : [function] function to be used to get the distribution parameters. threshold : [numeric] Value you want to consider only the greater values. method : [string] 'mle', 'mm', 'lmoments', optimization test: bool Default is True

Returns#

param : [list] shape, loc, scale parameter of the gumbel distribution in that order.

Examples#
  • Instantiate the Exponential class only with the data.

    data = np.loadtxt("examples/data/expo.txt") expo_dist = Exponential(data)

  • Then use the fit_model method to estimate the distribution parameters. the method takes the method as parameter, the default is 'mle'. the test parameter is used to perform the Kolmogorov-Smirnov and chisquare test.

    parameters = expo_dist.fit_model(method="mle", test=True) -----KS Test-------- Statistic = 0.019 Accept Hypothesis P value = 0.9937026761524456 Out[14]: {'loc': 0.0009, 'scale': 2.0498075} print(parameters)

  • You can also use the lmoments method to estimate the distribution parameters.

    parameters = expo_dist.fit_model(method="lmoments", test=True) -----KS Test-------- Statistic = 0.021 Accept Hypothesis P value = 0.9802627322900355 print(parameters)

Source code in statista/distributions.py
def fit_model(
    self,
    method: str = "mle",
    obj_func=None,
    threshold: Union[int, float, None] = None,
    test: bool = True,
) -> Dict[str, float]:
    """fit_model.

    fit_model estimates the distribution parameter based on MLM
    (Maximum likelihood method), if an objective function is entered as an input

    There are two likelihood functions (L1 and L2), one for values above some
    threshold (x>=C) and one for the values below (x < C), now the likeliest parameters
    are those at the max value of multiplication between two functions max(L1*L2).

    In this case, the L1 is still the product of multiplication of probability
    density function's values at xi, but the L2 is the probability that threshold
    value C will be exceeded (1-F(C)).

    Parameters
    ----------
    obj_func : [function]
        function to be used to get the distribution parameters.
    threshold : [numeric]
        Value you want to consider only the greater values.
    method : [string]
        'mle', 'mm', 'lmoments', optimization
    test: bool
        Default is True

    Returns
    -------
    param : [list]
        shape, loc, scale parameter of the gumbel distribution in that order.

    Examples
    --------
    - Instantiate the `Exponential` class only with the data.

        >>> data = np.loadtxt("examples/data/expo.txt")
        >>> expo_dist = Exponential(data)

    - Then use the `fit_model` method to estimate the distribution parameters. the method takes the method as
        parameter, the default is 'mle'. the `test` parameter is used to perform the Kolmogorov-Smirnov and chisquare
        test.

        >>> parameters = expo_dist.fit_model(method="mle", test=True)
        -----KS Test--------
        Statistic = 0.019
        Accept Hypothesis
        P value = 0.9937026761524456
        Out[14]: {'loc': 0.0009, 'scale': 2.0498075}
        >>> print(parameters)
        {'loc': 0, 'scale': 2}

    - You can also use the `lmoments` method to estimate the distribution parameters.

        >>> parameters = expo_dist.fit_model(method="lmoments", test=True)
        -----KS Test--------
        Statistic = 0.021
        Accept Hypothesis
        P value = 0.9802627322900355
        >>> print(parameters)
        {'loc': -0.00805012182182141, 'scale': 2.0587576218218215}
    """
    # obj_func = lambda p, x: (-np.log(Gumbel.pdf(x, p[0], p[1]))).sum()
    # #first we make a simple Gumbel fit
    # Par1 = so.fmin(obj_func, [0.5,0.5], args=(np.array(data),))
    method = super().fit_model(method=method)

    if method == "mle" or method == "mm":
        param = list(expon.fit(self.data, method=method))
    elif method == "lmoments":
        lm = Lmoments(self.data)
        lmu = lm.Lmom()
        param = Lmoments.exponential(lmu)
    elif method == "optimization":
        if obj_func is None or threshold is None:
            raise TypeError("obj_func and threshold should be numeric value")

        param = expon.fit(self.data, method="mle")
        # then we use the result as starting value for your truncated Gumbel fit
        param = so.fmin(
            obj_func,
            [threshold, param[0], param[1]],
            args=(self.data,),
            maxiter=500,
            maxfun=500,
        )
        param = [param[1], param[2]]
    else:
        raise ValueError(f"The given: {method} does not exist")

    param = {"loc": param[0], "scale": param[1]}
    self.parameters = param

    if test:
        self.ks()
        # try:
        #     self.chisquare()
        # except ValueError:
        #     print("chisquare test failed")

    return param

inverse_cdf(cdf=None, parameters=None) #

Theoretical Estimate.

Theoretical Estimate method calculates the theoretical values based on a given non-exceedance probability

Parameters#

parameters: Dict[str, str]

- loc: [numeric]
    location parameter of the gumbel distribution.
- scale: [numeric]
    scale parameter of the gumbel distribution.

cdf: [list] cumulative distribution function/ Non-Exceedance probability.

Returns#

theoretical value: [numeric] Value based on the theoretical distribution

Examples#
  • Instantiate the Exponential class only with the data.

    data = np.loadtxt("examples/data/expo.txt") parameters = {'loc': 0, 'scale': 2} expo_dist = Exponential(data, parameters)

  • We will generate a random numbers between 0 and 1 and pass it to the inverse_cdf method as a probabilities to get the data that coresponds to these probabilities based on the distribution.

    cdf = [0.1, 0.2, 0.4, 0.6, 0.8, 0.9] data_values = expo_dist.inverse_cdf(cdf) print(data_values) [0.21072103 0.4462871 1.02165125 1.83258146 3.21887582 4.60517019]

Source code in statista/distributions.py
def inverse_cdf(
    self,
    cdf: Union[np.ndarray, List[float]] = None,
    parameters: Dict[str, Union[float, Any]] = None,
) -> np.ndarray:
    """Theoretical Estimate.

    Theoretical Estimate method calculates the theoretical values based on a given  non-exceedance probability

    Parameters
    -----------
    parameters: Dict[str, str]
        {"loc": val, "scale": val}

        - loc: [numeric]
            location parameter of the gumbel distribution.
        - scale: [numeric]
            scale parameter of the gumbel distribution.
    cdf: [list]
        cumulative distribution function/ Non-Exceedance probability.

    Returns
    -------
    theoretical value: [numeric]
        Value based on the theoretical distribution

    Examples
    --------
    - Instantiate the Exponential class only with the data.

        >>> data = np.loadtxt("examples/data/expo.txt")
        >>> parameters = {'loc': 0, 'scale': 2}
        >>> expo_dist = Exponential(data, parameters)

    - We will generate a random numbers between 0 and 1 and pass it to the inverse_cdf method as a probabilities
        to get the data that coresponds to these probabilities based on the distribution.

        >>> cdf = [0.1, 0.2, 0.4, 0.6, 0.8, 0.9]
        >>> data_values = expo_dist.inverse_cdf(cdf)
        >>> print(data_values)
        [0.21072103 0.4462871  1.02165125 1.83258146 3.21887582 4.60517019]
    """
    if parameters is None:
        parameters = self.parameters

    loc = parameters.get("loc")
    scale = parameters.get("scale")

    if scale <= 0:
        raise ValueError("Parameters Invalid")

    if any(cdf) < 0 or any(cdf) > 1:
        raise ValueError("cdf Value Invalid")

    # the main equation from scipy
    q_th = expon.ppf(cdf, loc=loc, scale=scale)
    return q_th

ks() #

Kolmogorov-Smirnov (KS) test.

The smaller the D static, the more likely that the two samples are drawn from the same distribution IF Pvalue < significance level ------ reject

Returns#
Dstatic: [numeric]
    The smaller the D static the more likely that the two samples are drawn from the same distribution
Pvalue : [numeric]
    IF Pvalue < significance level ------ reject the null hypothesis
Source code in statista/distributions.py
def ks(self):
    """Kolmogorov-Smirnov (KS) test.

    The smaller the D static, the more likely that the two samples are drawn from the same distribution
    IF Pvalue < significance level ------ reject

    Returns
    -------
        Dstatic: [numeric]
            The smaller the D static the more likely that the two samples are drawn from the same distribution
        Pvalue : [numeric]
            IF Pvalue < significance level ------ reject the null hypothesis
    """
    return super().ks()

chisquare() #

chisquare test

Source code in statista/distributions.py
def chisquare(self) -> tuple:
    """chisquare test"""
    return super().chisquare()

statista.distributions.Normal #

Bases: AbstractDistribution

Normal Distribution.

  • The probability density function (PDF) of the Normal distribution is:

    .. math:: f(x: threshold, scale) = (1/scale) e **(- (x-threshold)/scale) 🏷 normal-equation

  • The cumulative distribution functions.

    .. math:: F(x: threshold, scale) = 1 - e **(- (x-threshold)/scale) 🏷 normal-cdf

Source code in statista/distributions.py
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
class Normal(AbstractDistribution):
    """Normal Distribution.

    - The probability density function (PDF) of the Normal distribution is:

        .. math::
            f(x: threshold, scale) = (1/scale) e **(- (x-threshold)/scale)
          :label: normal-equation

    - The cumulative distribution functions.

        .. math::
            F(x: threshold, scale) = 1 - e **(- (x-threshold)/scale)
          :label: normal-cdf
    """

    def __init__(
        self,
        data: Union[list, np.ndarray] = None,
        parameters: Dict[str, float] = None,
    ):
        """Gumbel.

        Parameters
        ----------
        data : [list]
            data time series.
        parameters: Dict[str, str]
            {"loc": val, "scale": val}

            - loc: [numeric]
                location parameter of the exponential distribution.
            - scale: [numeric]
                scale parameter of the exponential distribution.
        """
        super().__init__(data, parameters)

    @staticmethod
    def _pdf_eq(
        data: Union[list, np.ndarray], parameters: Dict[str, Union[float, Any]]
    ) -> np.ndarray:
        loc = parameters.get("loc")
        scale = parameters.get("scale")
        if scale <= 0:
            raise ValueError("Scale parameter is negative")
        pdf = norm.pdf(data, loc=loc, scale=scale)

        return pdf

    def pdf(
        self,
        plot_figure: bool = False,
        parameters: Dict[str, float] = None,
        data: Union[List[float], np.ndarray] = None,
        *args,
        **kwargs,
    ) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
        """pdf.

        Returns the value of Gumbel's pdf with parameters loc and scale at x.

        Parameters
        -----------
        parameters: Dict[str, str], optional, default is None.
            if not provided, the parameters provided in the class initialization will be used.
            {"loc": val, "scale": val, "shape": value}

            - loc: [numeric]
                location parameter of the GEV distribution.
            - scale: [numeric]
                scale parameter of the GEV distribution.
        data : np.ndarray, default is None.
            array if you want to calculate the pdf for different data than the time series given to the constructor
            method.
        plot_figure: [bool]
            Default is False.
        kwargs:
            fig_size: [tuple]
                Default is (6, 5).
            xlabel: [str]
                Default is "Actual data".
            ylabel: [str]
                Default is "pdf".
            fontsize: [int]
                Default is 15

        Returns
        -------
        pdf: [array]
            probability density function pdf.
        fig: matplotlib.figure.Figure, if `plot_figure` is True.
            Figure object.
        ax: matplotlib.axes.Axes, if `plot_figure` is True.
            Axes object.
        """
        result = super().pdf(
            parameters=parameters,
            data=data,
            plot_figure=plot_figure,
            *args,
            **kwargs,
        )

        return result

    @staticmethod
    def _cdf_eq(
        data: Union[list, np.ndarray], parameters: Dict[str, Union[float, Any]]
    ) -> np.ndarray:
        loc = parameters.get("loc")
        scale = parameters.get("scale")

        if scale <= 0:
            raise ValueError("Scale parameter is negative")
        if loc <= 0:
            raise ValueError("Threshold parameter should be greater than zero")

        cdf = norm.cdf(data, loc=loc, scale=scale)
        return cdf

    def cdf(
        self,
        plot_figure: bool = False,
        parameters: Dict[str, Union[float, Any]] = None,
        data: Union[List[float], np.ndarray] = None,
        *args,
        **kwargs,
    ) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
        """cdf.

        cdf calculates the value of Normal distribution cdf with parameters loc and scale at x.

        Parameters
        ----------
        parameters: Dict[str, str], optional, default is None.
            if not provided, the parameters provided in the class initialization will be used.
            {"loc": val, "scale": val, "shape": value}

            - loc: [numeric]
                location parameter of the Normal distribution.
            - scale: [numeric]
                scale parameter of the Normal distribution.
        data : np.ndarray, default is None.
            array if you want to calculate the pdf for different data than the time series given to the constructor
            method.
        plot_figure: [bool]
            Default is False.
        kwargs:
            fig_size: [tuple]
                Default is (6, 5).
            xlabel: [str]
                Default is "Actual data".
            ylabel: [str]
                Default is "cdf".
            fontsize: [int]
                Default is 15.

        Returns
        -------
        cdf: [array]
            probability density function cdf.
        fig: matplotlib.figure.Figure, if `plot_figure` is True.
            Figure object.
        ax: matplotlib.axes.Axes, if `plot_figure` is True.
            Axes object.
        """
        result = super().cdf(
            parameters=parameters,
            data=data,
            plot_figure=plot_figure,
            *args,
            **kwargs,
        )
        return result

    def fit_model(
        self,
        method: str = "mle",
        obj_func=None,
        threshold: Union[int, float, None] = None,
        test: bool = True,
    ) -> Dict[str, float]:
        """fit_model.

        fit_model estimates the distribution parameter based on MLM
        (Maximum likelihood method), if an objective function is entered as an input

        There are two likelihood functions (L1 and L2), one for values above some
        threshold (x>=C) and one for the values below (x < C), now the likeliest parameters
        are those at the max value of multiplication between two functions max(L1*L2).

        In this case, the L1 is still the product of multiplication of probability
        density function's values at xi, but the L2 is the probability that threshold
        value C will be exceeded (1-F(C)).

        Parameters
        ----------
        obj_func: [function]
            function to be used to get the distribution parameters.
        threshold: [numeric]
            Value you want to consider only the greater values.
        method: [string]
            'mle', 'mm', 'lmoments', optimization
        test: bool
            Default is True

        Returns
        -------
        parameters: [list]
            shape, loc, scale parameter of the gumbel distribution in that order.
        """
        # obj_func = lambda p, x: (-np.log(Gumbel.pdf(x, p[0], p[1]))).sum()
        # #first we make a simple Gumbel fit
        # Par1 = so.fmin(obj_func, [0.5,0.5], args=(np.array(data),))
        method = super().fit_model(method=method)

        if method == "mle" or method == "mm":
            param = list(norm.fit(self.data, method=method))
        elif method == "lmoments":
            lm = Lmoments(self.data)
            lmu = lm.Lmom()
            param = Lmoments.normal(lmu)
        elif method == "optimization":
            if obj_func is None or threshold is None:
                raise TypeError("obj_func and threshold should be numeric value")

            param = norm.fit(self.data, method="mle")
            # then we use the result as starting value for your truncated Gumbel fit
            param = so.fmin(
                obj_func,
                [threshold, param[0], param[1]],
                args=(self.data,),
                maxiter=500,
                maxfun=500,
            )
            param = [param[1], param[2]]
        else:
            raise ValueError(f"The given: {method} does not exist")

        param = {"loc": param[0], "scale": param[1]}
        self.parameters = param

        if test:
            self.ks()
            # try:
            #     self.chisquare()
            # except ValueError:
            #     print("chisquare test failed")

        return param

    def inverse_cdf(
        self,
        cdf: Union[np.ndarray, List[float]] = None,
        parameters: Dict[str, Union[float, Any]] = None,
    ) -> np.ndarray:
        """Theoretical Estimate.

        Theoretical Estimate method calculates the theoretical values based on a given  non exceedence probability

        Parameters
        -----------
        parameters: Dict[str, str]
            {"loc": val, "scale": val}

            - loc: [numeric]
                location parameter of the Normal distribution.
            - scale: [numeric]
                scale parameter of the Normal distribution.
        cdf: [list]
            cumulative distribution function/ Non-Exceedance probability.

        Returns
        -------
        numeric:
            Value based on the theoretical distribution
        """
        if parameters is None:
            parameters = self.parameters

        loc = parameters.get("loc")
        scale = parameters.get("scale")

        if scale <= 0:
            raise ValueError("Parameters Invalid")

        if any(cdf) < 0 or any(cdf) > 1:
            raise ValueError("cdf Value Invalid")

        # the main equation from scipy
        q_th = norm.ppf(cdf, loc=loc, scale=scale)
        return q_th

    def ks(self):
        """Kolmogorov-Smirnov (KS) test.

        The smaller the D static, the more likely that the two samples are drawn from the same distribution
        IF Pvalue < significance level ------ reject

        Returns
        -------
        Dstatic: [numeric]
            The smaller the D static the more likely that the two samples are drawn from the same distribution
        Pvalue: [numeric]
            IF Pvalue < significance level ------ reject the null hypothesis
        """
        return super().ks()

    def chisquare(self) -> tuple:
        """chisquare test"""
        return super().chisquare()

__init__(data=None, parameters=None) #

Gumbel.

Parameters#

data : [list] data time series. parameters: Dict[str, str]

- loc: [numeric]
    location parameter of the exponential distribution.
- scale: [numeric]
    scale parameter of the exponential distribution.
Source code in statista/distributions.py
def __init__(
    self,
    data: Union[list, np.ndarray] = None,
    parameters: Dict[str, float] = None,
):
    """Gumbel.

    Parameters
    ----------
    data : [list]
        data time series.
    parameters: Dict[str, str]
        {"loc": val, "scale": val}

        - loc: [numeric]
            location parameter of the exponential distribution.
        - scale: [numeric]
            scale parameter of the exponential distribution.
    """
    super().__init__(data, parameters)

pdf(plot_figure=False, parameters=None, data=None, *args, **kwargs) #

pdf.

Returns the value of Gumbel's pdf with parameters loc and scale at x.

Parameters#

parameters: Dict[str, str], optional, default is None. if not provided, the parameters provided in the class initialization will be used.

- loc: [numeric]
    location parameter of the GEV distribution.
- scale: [numeric]
    scale parameter of the GEV distribution.

data : np.ndarray, default is None. array if you want to calculate the pdf for different data than the time series given to the constructor method. plot_figure: [bool] Default is False. kwargs: fig_size: [tuple] Default is (6, 5). xlabel: [str] Default is "Actual data". ylabel: [str] Default is "pdf". fontsize: [int] Default is 15

Returns#

pdf: [array] probability density function pdf. fig: matplotlib.figure.Figure, if plot_figure is True. Figure object. ax: matplotlib.axes.Axes, if plot_figure is True. Axes object.

Source code in statista/distributions.py
def pdf(
    self,
    plot_figure: bool = False,
    parameters: Dict[str, float] = None,
    data: Union[List[float], np.ndarray] = None,
    *args,
    **kwargs,
) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
    """pdf.

    Returns the value of Gumbel's pdf with parameters loc and scale at x.

    Parameters
    -----------
    parameters: Dict[str, str], optional, default is None.
        if not provided, the parameters provided in the class initialization will be used.
        {"loc": val, "scale": val, "shape": value}

        - loc: [numeric]
            location parameter of the GEV distribution.
        - scale: [numeric]
            scale parameter of the GEV distribution.
    data : np.ndarray, default is None.
        array if you want to calculate the pdf for different data than the time series given to the constructor
        method.
    plot_figure: [bool]
        Default is False.
    kwargs:
        fig_size: [tuple]
            Default is (6, 5).
        xlabel: [str]
            Default is "Actual data".
        ylabel: [str]
            Default is "pdf".
        fontsize: [int]
            Default is 15

    Returns
    -------
    pdf: [array]
        probability density function pdf.
    fig: matplotlib.figure.Figure, if `plot_figure` is True.
        Figure object.
    ax: matplotlib.axes.Axes, if `plot_figure` is True.
        Axes object.
    """
    result = super().pdf(
        parameters=parameters,
        data=data,
        plot_figure=plot_figure,
        *args,
        **kwargs,
    )

    return result

cdf(plot_figure=False, parameters=None, data=None, *args, **kwargs) #

cdf.

cdf calculates the value of Normal distribution cdf with parameters loc and scale at x.

Parameters#

parameters: Dict[str, str], optional, default is None. if not provided, the parameters provided in the class initialization will be used.

- loc: [numeric]
    location parameter of the Normal distribution.
- scale: [numeric]
    scale parameter of the Normal distribution.

data : np.ndarray, default is None. array if you want to calculate the pdf for different data than the time series given to the constructor method. plot_figure: [bool] Default is False. kwargs: fig_size: [tuple] Default is (6, 5). xlabel: [str] Default is "Actual data". ylabel: [str] Default is "cdf". fontsize: [int] Default is 15.

Returns#

cdf: [array] probability density function cdf. fig: matplotlib.figure.Figure, if plot_figure is True. Figure object. ax: matplotlib.axes.Axes, if plot_figure is True. Axes object.

Source code in statista/distributions.py
def cdf(
    self,
    plot_figure: bool = False,
    parameters: Dict[str, Union[float, Any]] = None,
    data: Union[List[float], np.ndarray] = None,
    *args,
    **kwargs,
) -> Union[Tuple[np.ndarray, Figure, Any], np.ndarray]:
    """cdf.

    cdf calculates the value of Normal distribution cdf with parameters loc and scale at x.

    Parameters
    ----------
    parameters: Dict[str, str], optional, default is None.
        if not provided, the parameters provided in the class initialization will be used.
        {"loc": val, "scale": val, "shape": value}

        - loc: [numeric]
            location parameter of the Normal distribution.
        - scale: [numeric]
            scale parameter of the Normal distribution.
    data : np.ndarray, default is None.
        array if you want to calculate the pdf for different data than the time series given to the constructor
        method.
    plot_figure: [bool]
        Default is False.
    kwargs:
        fig_size: [tuple]
            Default is (6, 5).
        xlabel: [str]
            Default is "Actual data".
        ylabel: [str]
            Default is "cdf".
        fontsize: [int]
            Default is 15.

    Returns
    -------
    cdf: [array]
        probability density function cdf.
    fig: matplotlib.figure.Figure, if `plot_figure` is True.
        Figure object.
    ax: matplotlib.axes.Axes, if `plot_figure` is True.
        Axes object.
    """
    result = super().cdf(
        parameters=parameters,
        data=data,
        plot_figure=plot_figure,
        *args,
        **kwargs,
    )
    return result

fit_model(method='mle', obj_func=None, threshold=None, test=True) #

fit_model.

fit_model estimates the distribution parameter based on MLM (Maximum likelihood method), if an objective function is entered as an input

There are two likelihood functions (L1 and L2), one for values above some threshold (x>=C) and one for the values below (x < C), now the likeliest parameters are those at the max value of multiplication between two functions max(L1*L2).

In this case, the L1 is still the product of multiplication of probability density function's values at xi, but the L2 is the probability that threshold value C will be exceeded (1-F(C)).

Parameters#

obj_func: [function] function to be used to get the distribution parameters. threshold: [numeric] Value you want to consider only the greater values. method: [string] 'mle', 'mm', 'lmoments', optimization test: bool Default is True

Returns#

parameters: [list] shape, loc, scale parameter of the gumbel distribution in that order.

Source code in statista/distributions.py
def fit_model(
    self,
    method: str = "mle",
    obj_func=None,
    threshold: Union[int, float, None] = None,
    test: bool = True,
) -> Dict[str, float]:
    """fit_model.

    fit_model estimates the distribution parameter based on MLM
    (Maximum likelihood method), if an objective function is entered as an input

    There are two likelihood functions (L1 and L2), one for values above some
    threshold (x>=C) and one for the values below (x < C), now the likeliest parameters
    are those at the max value of multiplication between two functions max(L1*L2).

    In this case, the L1 is still the product of multiplication of probability
    density function's values at xi, but the L2 is the probability that threshold
    value C will be exceeded (1-F(C)).

    Parameters
    ----------
    obj_func: [function]
        function to be used to get the distribution parameters.
    threshold: [numeric]
        Value you want to consider only the greater values.
    method: [string]
        'mle', 'mm', 'lmoments', optimization
    test: bool
        Default is True

    Returns
    -------
    parameters: [list]
        shape, loc, scale parameter of the gumbel distribution in that order.
    """
    # obj_func = lambda p, x: (-np.log(Gumbel.pdf(x, p[0], p[1]))).sum()
    # #first we make a simple Gumbel fit
    # Par1 = so.fmin(obj_func, [0.5,0.5], args=(np.array(data),))
    method = super().fit_model(method=method)

    if method == "mle" or method == "mm":
        param = list(norm.fit(self.data, method=method))
    elif method == "lmoments":
        lm = Lmoments(self.data)
        lmu = lm.Lmom()
        param = Lmoments.normal(lmu)
    elif method == "optimization":
        if obj_func is None or threshold is None:
            raise TypeError("obj_func and threshold should be numeric value")

        param = norm.fit(self.data, method="mle")
        # then we use the result as starting value for your truncated Gumbel fit
        param = so.fmin(
            obj_func,
            [threshold, param[0], param[1]],
            args=(self.data,),
            maxiter=500,
            maxfun=500,
        )
        param = [param[1], param[2]]
    else:
        raise ValueError(f"The given: {method} does not exist")

    param = {"loc": param[0], "scale": param[1]}
    self.parameters = param

    if test:
        self.ks()
        # try:
        #     self.chisquare()
        # except ValueError:
        #     print("chisquare test failed")

    return param

inverse_cdf(cdf=None, parameters=None) #

Theoretical Estimate.

Theoretical Estimate method calculates the theoretical values based on a given non exceedence probability

Parameters#

parameters: Dict[str, str]

- loc: [numeric]
    location parameter of the Normal distribution.
- scale: [numeric]
    scale parameter of the Normal distribution.

cdf: [list] cumulative distribution function/ Non-Exceedance probability.

Returns#

numeric: Value based on the theoretical distribution

Source code in statista/distributions.py
def inverse_cdf(
    self,
    cdf: Union[np.ndarray, List[float]] = None,
    parameters: Dict[str, Union[float, Any]] = None,
) -> np.ndarray:
    """Theoretical Estimate.

    Theoretical Estimate method calculates the theoretical values based on a given  non exceedence probability

    Parameters
    -----------
    parameters: Dict[str, str]
        {"loc": val, "scale": val}

        - loc: [numeric]
            location parameter of the Normal distribution.
        - scale: [numeric]
            scale parameter of the Normal distribution.
    cdf: [list]
        cumulative distribution function/ Non-Exceedance probability.

    Returns
    -------
    numeric:
        Value based on the theoretical distribution
    """
    if parameters is None:
        parameters = self.parameters

    loc = parameters.get("loc")
    scale = parameters.get("scale")

    if scale <= 0:
        raise ValueError("Parameters Invalid")

    if any(cdf) < 0 or any(cdf) > 1:
        raise ValueError("cdf Value Invalid")

    # the main equation from scipy
    q_th = norm.ppf(cdf, loc=loc, scale=scale)
    return q_th

ks() #

Kolmogorov-Smirnov (KS) test.

The smaller the D static, the more likely that the two samples are drawn from the same distribution IF Pvalue < significance level ------ reject

Returns#

Dstatic: [numeric] The smaller the D static the more likely that the two samples are drawn from the same distribution Pvalue: [numeric] IF Pvalue < significance level ------ reject the null hypothesis

Source code in statista/distributions.py
def ks(self):
    """Kolmogorov-Smirnov (KS) test.

    The smaller the D static, the more likely that the two samples are drawn from the same distribution
    IF Pvalue < significance level ------ reject

    Returns
    -------
    Dstatic: [numeric]
        The smaller the D static the more likely that the two samples are drawn from the same distribution
    Pvalue: [numeric]
        IF Pvalue < significance level ------ reject the null hypothesis
    """
    return super().ks()

chisquare() #

chisquare test

Source code in statista/distributions.py
def chisquare(self) -> tuple:
    """chisquare test"""
    return super().chisquare()